More Recent Comments

Wednesday, August 06, 2008

Nobel Laureates: Karl von Frisch, Konrad Lorenz, Nikolaas Tinbergen

 

The Nobel Prize in Physiology or Medicine 1973.
"for their discoveries concerning organization and elicitation of individual and social behaviour patterns"

Karl von Frisch (1886 - 1982), Konrad Lorenz (1903 - 1989), and Nikolaas Tinbergen (1907 - 1988) received the Nobel Prize in Physiology or Medicine for their work on animal behavior. This is the most biological of all Nobel Prizes that have been awarded and, at the time, it suggested that the Nobel Committee was prepared to consider a wider view of "physiology." That turned out to be optimistic. Subsequent prizes have failed to recognize advancements in evolution and ecology, to name just two disciplines that have been ignored.

The presentation speech was delivered in Swedish by Professor Börje Cronholm of the Karolinska Medico-Chirurgical Institute.

THEME:
Nobel Laureates
Your Majesty, Your Royal Highnesses, Ladies and Gentlemen,

Animal behavior has fascinated man since time immemorial as can be witnessed by the important role of animals in myths, fairy-tales and fables. However, for too long man has tried to understand it from his own experiences, from his own way of thinking, feeling and acting. Descriptions along these lines may be quite poetic, but they do not lead to any increase in knowledge. Various pre-scientific ideas have been especially tenacious in this field. Thus, it is not long ago that the vitalists maintained that the instincts bore witness of a wisdom that was inherent in the organism and could not be further analyzed. It was not until behavior problems were studied by means of scientific methods, by systematic observation and by experimentation, that real progress was made. Within that research field this year's Nobel prize laureates have been pioneers. They have collected numerous data about animal behavior both in natural settings and in experimental situations. Being biological scholars they leave also studied the functions of behavior patterns, their role in the individual struggle for life and for the continuation of the species. Thus, behavior patterns have stood out as results of natural selection just as morphological characteristics and physiological functions.

It is of fundamental importance that some behavior patterns evidently are genetically programmed. The so-called fixed action patterns do not request any previous experience and they will be automatically elicited by definite key stimuli. They proceed in a mechanical, robot-like way, and when they have started they are no more influenced by external circumstances. In insects, fishes and birds, such important procedures as courtship, nesting and taking care of the brood, to a large extent consist in fixed action patterns. With development of the brain hemispheres, behavior has become increasingly modifiable and dependent on learning in mammals and especially in man, but fixed action patterns still play an important role.

For more than sixty years: Karl von Frisch has devoted himself to studies of the very complicated behavior of honeybees. Above all, he has elucidated what has rightly been called 'the language of bees'. When a bee has found flowers containing nectar, it performs a special dance when returning to the hive. The dance informs the bees in the hive of the existence of food, often also about the direction where the flowers will be found and about the distance to them. The foraging bee is able to indicate the direction of the food source in relation to the sun by means of analyzing polarized, ultraviolet light from the sky, light that is invisible to us. The honeybees do not learn, either to dance or to understand the message of the dance. Both the dancing and the appropriate reactions to it are genetically programmed behavior patterns.

Konrad Lorenz has studied among many other things the fixed action patterns of various birds. His experiments with inexperienced animals, e.g. young birds from an incubator, are of great importance in this context. In these young birds he observed behavior patterns that could not reasonably have been learnt but were to be interpreted as being genetically programmed. He also found that experiences of young animals during a critical period could be decisive for their future development. Newborn ducks and geese follow the first moving object that they catch sight of, and later on they will follow those particular objects only. Normally, they will follow their mother, but they may be seduced to follow almost any moving object or creature. This phenomenon has been called 'imprinting'.

While Konrad Lorenz has above all been a systematic observer of animal behavior, Nikolaas Tinbergen has to a large extent tested various hypotheses by means of comprehensive, careful, and quite often ingenious experiments. Among other things, he has used dummies to measure the strength of different key stimuli as regards their ability to elicit corresponding fixed action patterns. He made the important observation that 'supranormal' stimuli eliciting more intense behavior than those of natural conditions, may be produced by exaggerating certain characteristics.

The discoveries made by this year's Nobel prize laureates were based on studies of insects, fishes and birds and might thus seem to be of only minor importance for human physiology or medicine. However, their discoveries have been a prerequisite for the comprehensive research that is now pursued also on mammals. Studies are devoted to the existence of genetically programmed behavior patterns, their organization, maturation and their elicitation by key stimuli. There are also studies concerning the importance of specific experiences during critical periods for the normal development of the individual. Research into the behavior of monkeys have demonstrated that serious and to a large extent lasting behavior disturbances may be the result when a baby grows up in isolation without contact with its mother and siblings or with adequate substitutes. Another important research field concerns the effects of abnormal psychosocial situations on the individual. They may lead not only to abnormal behavior but also to serious somatic illness such as arterial hypertension and myocardial infarction. One important conclusion is that the psychosocial situation of an individual cannot be too adverse to its biological equipment without serious consequences. This holds true for all species, also for that which in shameless vanity has baptized itself 'Homo sapiens'.

Karl von Frisch, Konrad Lorenz, Nikolaas Tinbergen,

According to an old fable, cited by one of you, king Solomon is said to have been the owner of a ring that had the mystical power to give him the gift of understanding the language of animals. You have been the successors of king Solomon in the respect that you have been able to decode the information that animals pass to each other, and also to elucidate the meaning of their behavior to us. Your ability to find general rules underlying the confusing manifold of animal behavior makes us sometimes believe that king Solomon's ring has in fact been available also to you. But we know that you have been working in an empirical way, collecting data and interpreting it according to hard and fast scientific rules.

Aside from their value in themselves, your discoveries have had a farreaching influence on such medical disciplines as social medicine, psychiatry and psychosomatic medicine. For that reason it was very much in agreement with the spirit of Alfred Nobel's will when the medical faculty of the Karolinska Institute awarded you this year's Nobel Prize.

We are proud to have two of you, professor Konrad Lorenz and professor Nikolaas Tinbergen, with us today, and we are also grateful to professor Karl von Frisch that he has sent his son, professor Otto von Frisch, to represent him here.

On behalf of the Karolinska Institute I wish to convey to you the warmest congratulations and I now ask you to receive your prize from the hands of His Majesty the King.


Epigenetics in 1952-53

 
This week's Citation Classics are, indeed, classics [This Week's Citation Classics: Host Induced Variation]. They were the first papers to describe a new form of non-Mendelian inheritance that eventually became well-understood at the molecular level. Today, scientists working on animal development think they have independently discovered this concept. They call it epigenetics.

As John Dennehy says,
Today epigenetics is all the rage, but it has its roots in a pair of papers appeared nearly simultaneously in 1952-1953.


John Hawks and Comments

John Hawks is writing a series on blogging and tenure. In the last installment, How to blog, get tenure and prosper: A very useful engine, he discusses reasons for blogging. You should read the whole thing, but I'd like to focus on one small part.

John Hawks does not allow comments on his blog. It's the only science blog that I know of with a no-comment policy.1 Here's why, according to Hawks,
For some people, the most rewarding part about a blog is the immediate feedback from comments. Others dislike the comment section, whether it’s the constant battle against spam, or the trolls, or the pressure to respond to comments.

Personally, I can let a question sit in my inbox for a long time (as some of you know!), but I wouldn’t tolerate it sitting unanswered on my site. That’s my most important reason for not having a comments section: I think about posts, and I think about replies, and comments don’t generally give much time for thinking. The sites I like the best take a hybrid approach: They include questions or comments from readers, but do not have a “comments section” for each post. That kind of full-moderation, indirect feedback still can provide the sense of interaction and community, but without the repetition, trolling, and off-topic digressions that often emerge in comments sections. That’s only my preference, though—you may feel differently.

Will your commenters hurt your tenure case? I don’t think it really matters whether you have comments or not, assuming that you keep out the spam and discourage bad behavior. Probably the most important thing, as I’ll describe in the next installment, is that you mind your university’s use guidelines. As long as you follow the rules, your readers and evaluators are almost certainly smart enough to understand that your commenters are not you.

A healthy, lively comment ecosystem will add to the value of your blog. Your regular commenters help to give your site an identity by giving it a sense of community. Pointing to the community element can help to sell your site to your committee. University mission statements often include ideas like “building learning communities,” or “providing to underserved communities” (more on this in part 4 of the series). A healthy comments section is evidence that you are indeed serving a community.

An anemic comment ecosystem, mostly a monoculture invaded by the occasional weed, will subtract value from your blog. Imagine that someone visited one of your classes. Would you want to show a class where the students just wouldn’t participate? Or where one student always stood up after the lecture and announced that your ideas were garbage? You don’t want to say you’re serving an active community, while your blog comments appear to give concrete evidence that you’re not.

As you approach your tenure review, you have to think carefully about how to sell your blog to a committee. Then take action: Shut down your comments for a while, or put them on full moderation, encourage your e-mailers to submit comments, or make a concerted effort to draw comments from students or people in your field. As you plan ahead, you can think of the best way to accentuate the positives, and a small force applied early may save a lot of explaining later.
Since you can't discuss these ideas on John's blog, I'm giving you the chance here. From my prespective, comments are the most fun part of blogging. I love the discussions that go on in the comments and I love to provoke debate by posting on controversial topics. It's what science is all about, as far as I'm concerned. I've learned a lot from commenters who disagree with what I write.

I don't ever want to censure anyone who comments on my blog—although there are one or two who test my patience. Personally, I don't think the downside of commenting is all that bad and it does very little to diminish the upside. On the other hand, there are blogs where the chaff is much more obvious than the wheat and I don't even bother reading the comments. I don't know how you would prevent that.


1. It's also one of the few blogs from a university professor with a disclaimer at the bottom of each posting. I wonder if this is a special rule at the University of Wisconsin?

Chance and Necessity

 
Thanks to Ryan Gregory [Blogs by Scientists], I've just added a new blog Chance and Necessity to my list of must-reads. As you might guess from the title, this blog is devoted to evolution. It's published by a "faculty member in the South"—presumably this means southern USA and not Australia or Chile.

Here are two teasers to tempt you to follow Ryan's suggestion and read Chance and Necessity. The first is Increasing neurogenesis in the adult mammalian brain ...
The conventional wisdom is that we are born with all the brain cells we’re ever going to have, and it’s all downhill from there—as we age, we lose brain cells, never to replace them. This, of course, explains why teenagers are so much smarter than their parents. Unfortunately for the conventional wisdom, it’s wrong.
The second is a posting on the debate over the significance of evo-devo; especially the claim that most morphological changes in animals are due to change in regulatory sequences and not in coding regions of protein [Incorporating evo-devo and the genetics of morphology].
Scientific controversies typically consist of vigorous exchanges of ideas with periodic injections of new data that may shape the debate. Personalities can certainly influence the path these controversies take, but the ultimate arbiter is data, not drama. In the field of evolutionary developmental biology (evo-devo) we can witness just such a lively situation, both in the literature and at meetings.
Read the comments to this posting. You'll find intelligent people discussing whether natural selection or random genetic drift accounts for morphological change. This is such a refreshing change from blogs where any challenge to adaptationist explanations is viewed as extreme heresy.


This Is Not a Spider

 
It's not a spider but I'm not going to tell you what it is. In order to find out, you'll have to go to Catalogue of Organisms and read up on these species. At the same time you'll discover why Christopher Taylor posts an article with the title: In Which I Reveal Just How Much of a Freak I Am.

Good luck Christopher, I don't think that's a freaky thing to do. I think it's cool.


FOX vs NPR

 
Canadian Cynic recently informed us of an American college professor who claims that his conservative students are smarter than his liberal students.

A bit of background. Peter Schweizer published an article in the National Post where he took issue with the widespread belief that liberals in America are smarter than conservatives. Apparently, George Bush has a higher IQ than other presidential candidates and got higher grades in school [The arrogance of uneducated liberals].
Popular culture has greatly contributed to the myth of ignorant conservatives and enlightened liberals. One study by a group of academics found that by examining 124 characters in 47 popular political films spanning five decades, liberals were routinely depicted as “more intelligent, friendly and good” than conservatives.

The arrogance of some liberals in this regard is astonishing. You don’t even have to be highly educated yourself to complain about how uneducated conservatives are. Michael Moore, college dropout, travels all over Europe talking about how “idiotic and uneducated” conservatives are. He also said: “Once you settle for a Ronald Reagan, then it’s easy to settle for a George Bush, and once you settle for a George Bush, then it’s real easy to settle for Bush II. You know, this should be evolution, instead it’s devolution. What’s next?”
Sounds about right to me.

One of the commenters (jdcarmine) on the National Post website chimes in with ...
Wonderful! I am a college professor and this is even more stunning when comparing liberals and conservatives. For example, last semester none of my liberal students had even the foggiest notion where Iran was relative to Israel and none could find the West Bank on a map. None knew where China and Russia were relative to the Middle East. But...All the conservative students knew these basic facts which made it easier for conservatives to discuss the significance of the Iraq war whereas the liberals could only spew platitudes about it.
Now here's the fun part. Canadian Cynic quotes a study done some years ago by WorldPublicOpinion.org [Misperceptions, the Media and the Iraq War] They asked about three misconceptions concerning the war in Iraq: (1) there were links between Iraq and al Qaeda; (2) weapons of mass destruction had been found in Iraq; (3) world public opinion supports the US invasion of Iraq.

They then compared the number of people who believed none of these misconceptions with their source of news. This is an indication of the politics of the people in the survey. People who watch FOX news are assumed to be more conservative that those who get their information from NPR. Here are the results ...
I think Canadian Cynic has a point. Sure, this doesn't prove that conservatives are stupid and liberals are smart, but it sure says something about gullibility and it's reasonable to assume that there might be a correlation between that and intelligence.1


1. I get most of my American news from CNN. I guess that makes me about average in intelligence. My main concern is that watching Larry King and Lou Dobbs will make me dumber than I am already.

Monday, August 04, 2008

Science and Philosophy Book Club: Wonderful Life

 
The Science and Philosophy Book Club is discussing Stephen Jay Gould's Wonderful Life this Thursday at CFI [Stephen Jay Gould's "Wonderful Life"]. Come to the Center for Inquiry on Beverley St. at 7pm on Thursday August 7th. A $2 donation is required. Bring something to eat.

You can sign up on the website and let everyone know if you are coming.

Wonderful Life is one of my favorite books. Apparently the central messag is very difficult to understand since so many people get it wrong. I've seen very bitter attacks on the central theme from people like Daniel Dennett in Darwin's Dangerous Idea (1995). He says,
I mentioned in chapter 2 that the main conclusion of Gould's "Wonderful Life: The Burgess Shale and the Nature of History" (1989) is that if the tape of life were rewound and played again and again, chances are mightly slim that we would ever appear again. There are three things about this conclusion that have baffled reviewers. First, why does he think it is so important? ... Second, exactly what is his conclusion—in effect, who does he mean by "we"? And third, how does he think this conclusion (whichever one it is) follows from his fascinating discussion of the Burgess Shale, to which it seems almost entirely unrelated?
Dennet is often referred to as "Dawkins' lapdog", a sarcastic reference to the relationship between Charles Darwin and Thomas Huxley.1 It should come as no surprise that Richard Dawkins didn't like Wonderful Life either, and for many of the same reasons that Dennet parroted in Darwin's Dangerous Idea. Here's what Dawkins said in a review published in 1990 and reprinted in A Devil's Chaplain.
How should Gould properly back up his claim that the Burgess fauna is super-diverse? He should—it would be the work of many years and might never be made convincing—take his ruler to the animals themselves, unprejudiced by modern preconceptions about "fundamental body plans" and classification. The true index of how unalike two animals are is how unalike they actually are. Gould prefers to ask whether they are members of known phyla. But known phyla are modern constructions. Relative resemblance to modern animals is not a sensible way of judging how far Cambrian animals resemble one another.

The five-eyed, nozzle-toting Opabinia cannot be assimilated to any textbook phylum. But, since textbooks are written with modern animals in mind, this does not mean that Opabinia was, in fact, as different from its contemporaries as the status "separate phylum" would suggest. Gould makes a token attempt to counter this criticism, but he is hamstrung by dyed-in-the-wool essentialism and Platonic ideal forms. He really seems unable to comprehend that animals are continuously variable functional machines. It is as though he sees the great phyla not diverging from early blood brothers but springing into existence fully differentiated.

Gould then, singularly fails to establish his super-diversity thesis. Even if he were right, what would this tell us about the 'nature of history'? Since, for Gould, the Cambrian was peopled with a greater cast of phyla than now exist, we must be wonderfully lucky survivors. It could have been our ancestors who went extinct; instead it was Conway Morris' 'weird wonders', Hallucigenia, Wiwaxia, and their friends. We came 'that close' to not being here.

Gould expects us to be surprised. Why? The view that he is attacking—that evolution marches inexorably towards a pinnacle such as man—has not been believed for years. But his quixotic strawmandering, his shamless windmill-tilting, seem almost designed to encourage misunderstanding (not for the first time: on a previous occasion he went so far as to write that the neo-Darwinian synthesis was 'effectively dead'). The following is typical of the publicity surrounding "Wonderful Life" (incidentally, I suspect that the lead sentence was added without the knowledge of the credited journalist): 'The human race did not result from the "survival of the fittest", according to the eminent American professor, Stephen Jay Gould. It was a happy accident that created Mankind.' Such twaddle, of course, is nowhere to be found in Gould, but whether or not he seeks that kind of publicity, he all too frequently attracts it. Readers regularly gain the impression that he is saying something far more radical and surprising than he actually is.

Survival of the fittest means individual survival, not survival of major lineages. Any orthodox Darwinian would be entirely happy with major extinctions being largely a matter of luck. Admittedly there is a minority of evolutionists who think that Darwinian selection chooses between higher-level groupings. They are the only Darwinians likely to be disconcerted by Gould's 'contingent extinction'. And who is the most prominent advocate of higher-level selection today? You've guessed it. Hoist again!
I'm amused that an ethologist is lecturing a paleontologist on how to interpret the fossil record.


1. First mentioned by Stephen Jay Gould in Darwinian Fundamentalism in the New York Review of Books, "If history, as often noted, replays grandeurs as farces, and if T.H. Huxley truly acted as 'Darwin's bulldog,' then it is hard to resist thinking of Dennett, in this book, as 'Dawkins's lapdog.'"

Sunday, August 03, 2008

Friday, August 01, 2008

The Night Chicago Died

 
Last weekend we watched Donnie Brasco, a 1997 film with Al Pacino and Johnny Depp. The plot is based on the true story of an FBI agent, played by Johnny Depp, who infiltrates the New York mob and befriends a petty criminal, played by Al Pacino. The acting is great. It's hard to understand why Al Pacino wasn't nominated for a major acting award. Perhaps it's because we had been nominated many times in the past and won best actor in 1992. The last scene in the movie is a classic.

The movie reminded me of a song by the British group Paper Lace. They wrote a song about a fictional2 night of warfare between Al Capone and the Chicago police. The song, The Night Chicago Died, reached #1 for a brief time in 1974.2 I think it's one of the best songs of the 70's but very few people agree with me.

If you haven't heard it you should click on the video and listen at least once. I love songs that tell a story and in order to appreciate the story you need to listen to the words as well as the music. I've included the lyrics. Read the opening lines in order to get the context. The song is about the family of a Chicago cop.
Daddy was a cop
On the East Side of Chicago
Back in the USA
Back in the bad old days
In the heat of a summer night
In the land of the dollar bill
When the town of Chicago died
And they talk about it still

When a man named Al Capone
Tried to make that town his own
And he called his gang to war
Against the forces of the law

I heard my momma cry
I heard her pray the night Chicago died
Brother, what a night it really was
Brother, what a fight it really was
Glory be

I heard my momma cry
I heard her pray the night Chicago died
Brother, what a night the people saw
Brother, what a fight the people saw
Yes, indeed

And the sound of the battle rang
Through the streets of the old East Side
'Til the last of the hoodlum gang
Had surrendered up or died

There was shouting in the street
And the sound of running feet
And I asked someone who said
'Bout a hundred cops are dead

I heard my momma cry
I heard her pray the night Chicago died
Brother, what a night it really was
Brother, what a fight it really was
Glory be

I heard my momma cry
I heard her pray the night Chicago died
Brother, what a night the people saw
Brother, what a fight the people saw
Yes, indeed

Then there was no sound at all
But the clock up on the wall
Then the door burst open wide
And my daddy stepped inside
And he kissed my momma's face
Then brushed her tears away

I heard my momma cry
I heard her pray the night Chicago died
Brother, what a night it really was
Brother, what a fight it really was
Glory be

I heard my momma cry
I heard her pray the night Chicago died
Brother, what a night the people saw
Brother, what a fight the people saw
Yes, indeed

The night Chicago died
The night Chicago died
Brother, what a night it really was
Brother, what a fight it really was
Glory be

The night Chicago died
The night Chicago died

1. There never was such a night in Chicago. Most of the killing took place when rival gangs fought it out, not between police and gang members. The British songwriters had never been to Chicago and knew very little of the history. It's one of those stories that you would like to be true but sometimes real history sucks.

2. It is often thought to be a backhanded reference to the Chicago riots of 1968 but there's no evidence to support that theory and by 1974 the memory had faded.

Soccer Team Wins by Scoring on Itself

 
Friday's Urban Legend: TRUE

This sounds so much like an urban legend that it's astonishing to learn it really happened. The story is covered on snopes.com [Football Follies].

It was a match between Barbados and Grenada in 1994. In order to advance to the finals, Barbados had to win by at least two goals. Near the end of the game Barbados was ahead 2-0 when an error resulted in an own goal by Barbados. With the score now 2-1 the Barbados team was threatened with elimination.

Here comes the funny part. The tournament rules state that in the event of a tie the game will be decided by sudden death overtime and, for the purposes of calculating points, the winner will be rewarded as though they had won by a score of 2-0. In the 87th minute, the Barbados team deliberately scored on themselves in order to tie the game and send it into overtime.

The Granada team realized what was going on and tried to score on themselves to avoid overtime and advance to the finals. (Winning 3-2 would not allow the Barbados team to advance.) Thus you have this bizarre scene where a team is trying to score in its own net while the opposition is defending their opponent's goal.

Here's a video of some of the action. Listen to the commentators. It sounds like a scene written by Monty Python.




Thursday, July 31, 2008

Species Diversity

 
Some of you might recall my series of postings last year on the top Science questions. One of them was What Causes Species Diversity?. This is an important unanswered question in evolutionary biology even if it's conflated with speciation. We don't really have a good handle on what causes speciation.

That doesn't mean that we are completely ignorant. There are several candidates that, singly or in combination, account for much of what we understand about speciation and diversity. I'd like to quote Richard Dawkins from Unweaving the Rainbow since, as an admitted adaptationist, his view carries much more weight than that of a pluralist. (The reason will become apparent.) Here's how Dawkins describes the problem ...

The standard neo-Darwinian view of the evolution of diversity is that a species splits into two when two populations become sufficiently unalike that they can no longer interbreed. Often the populations begin diverging when they chance to be geographically separated. The separation means that they no longer mix their genes sexually and this permits them to evolve in different directions. The divergent evolution might be driven by natural selection (which is likely to push in different direction because of different conditions in the two geographical areas). Or it might consist of random evolutionary drift (since the two populations are not genetically held together by sexual mixing, there is nothing to stop them drifting apart). In either case, when they have evolved sufficiently far apart that they no longer interbreed even if they were geographically united again, they are defined as belonging to separate species.
Either, or both, of the two main mechanisms of evolution—natural selection and random genetic drift—can lead to speciation and diversity.

One could also argue that diversity depends ultimately on mutation. In this case, the main role of natural selection and random genetic drift is to reduce diversity by eliminating unfit and neutral alleles.

This has always been similar to my understanding of speciation and diversity. I was surprised, therefore to learn that one of my colleagues at the University of Toronto, Spencer Barrett, doesn't think random genetic drift plays a role in speciation [see Darwinism at the ROM]. Barrett is one of the featured presenters in a video at the Darwin exhibit at the Royal Ontario Museum.

In a display on the evolution/creation controversy, I copied down the following statement ...
Darwin's Theory of Evolution by Natural Selection is the only scientific explanation for the spectacular diversity of life on Earth.
So, here's the question of the day. Do you agree with that statement? Do you agree that natural selection is the only scientific explanation of diversity? Spencer Barrett seems to agree. Richard Dawkins would not agree. What do you think?1


1. If you disagree with the statement then please try and explain why it is featured so prominently in the Darwin exhibit. Is this an example of framing, or ignorance?

Darwin: The Evolution Revolution

 


My how time flies. It was almost four months ago that the The Evolution Revolution opened at the Royal Ontario Museum (ROM) here in Toronto. The ROM is only ten minutes from my office so I wasn't in any particular rush to see the exhibit. After all, it wasn't going to close until August 4th.

Now August 4th is almost here and I still hadn't made the effort—until yesterday, that is. Ms. Sandwalk and I went and got a delightful dose of Charles Darwin.

For me, the most exciting exhibit was Darwin's red notebooks, especially the page with the tree and "I think" at the top of the page. It was awesome just realizing that Charles Darwin himself wrote those words 170 years ago. Ms. Sandwalk was not nearly as impressed (those messy things?). She liked the Wedgewood china representing the better side of the Darwin family.

There were lots of examples of Darwin's original collection. Mostly plants and birds and some fossils. Seeing an old photograph of the Sandwalk was another highlight.

I've heard two main criticisms of the exhibit. The first is that there's too much to read. I agree that there's a lot to read but it's mostly well written and informative. The majority of people at the exhibit were being appropriately selective in their reading. It wasn't a serious problem. The second criticism is the American slant in some of the exhibits; notably those that address the evolution/creation controversy. It was noticeable but most of the people there just took it as quaint to learn that some states want to put stickers in textbooks.

The biggest pain for me was having to watch and listen to theistic evolutionists explain—in three separate video presentations—why there's no conflict between evolution and religion. Ken Miller did an okay job but Francis Collins looks and talks like a used car salesman, in my humble opinion.

There was one other problem but I'm saving that for another posting.








I'm Your Man

 
Here's a reason why you should be my friend and invite me to all those parties that I never seem to hear about until they're over. In case of trouble, I make an excellent human shield!

65%



[Hat Tip: GrrlScientist, My Body Makes a Really Crappy Human Shield]

Wednesday, July 30, 2008

I'm so glad I took Latin

 
It means I can understand Christopher Taylor at Catalogue of Organisms when he writes about The Gender of a Table.

Eat your hearts out, all you speakers of living languages!


[Photo Credit: AP Photo]

Nobel Laureate: Joshua Lederberg

 
 

The Nobel Prize in Physiology or Medicine 1958.
"for his discoveries concerning genetic recombination and the organization of the genetic material of bacteria"

Joshua Lederberg (1925 - 2008) received the Nobel Prize in Physiology or Medicine for discovering that not only do bacteria have genes, they also have sex and recombination. Bacterial sex consists of passing genes from one individual to another by a method known as conjugation. The bacteria are joined by a long hollow tube [Monday's Molecule #82].

In 1958 Lederberg was only 33 years old, making him one of the youngest Nobel Laureates. He died only a few months ago, prompting comments on several blogs (e.g. Joshua Lederberg) and a special citation tribute from John Dennehy [Joshua Lederberg].

The New York Times called him one of the 2oth century's greatest scientists—an honor that would only be contested by those who don't know him. The New York Times obituary goes on to say,
Dr. Lederberg’s discovery that bacteria engage in sex created new understandings of how bacteria evolve and acquire new traits, including resistance to antibiotic drugs. A founder of the field of molecular biology, he helped lay the foundations for many biological revolutions, including biotechnology.

Dr. Lederberg moved in diverse worlds. A brilliant analyst and visionary, he led early inquiries into the possibility of computer intelligence, theorized about alien life in distant galaxies and advised American presidents for a half century. He also wrote a weekly newspaper column, “Science and Man.” His ideas were often decades ahead of the conventional wisdom.
Lederberg shared the 1958 prize with George Beadle and Edward Tatum [Nobel Laureates: George Beadle and Edward Tatum].

The presentation speech was delivered by Professor T. Caspersson, member of the Staff of Professors of the Royal Caroline Institute.

THEME:
Nobel Laureates
Your Majesties, Your Royal Highnesses, Ladies and Gentlemen.

One of the most striking features in the development of science during the past two decades is the rapid advance in the diverse fields of biology. Here the tempo of progress continues to quicken. The research contains a vast and complex material whose major portion remains the business of specialists. The observations they make in the laboratories of basic research are apparently distant from the needs of the everyday world. But again and again we discover how short the step is from these basic findings to advances in medical therapy or diagnosis that are of importance to all of us in our daily lives.

For an example we need turn only to the previous Nobel Prize in Genetics, awarded to H.J. Muller for his discovery that X-ray irradiation can change the genetic material in living organisms. The discovery was made, and the detailed analysis carried out, in a type of small fruit fly, and at the time that the prize was awarded, perhaps gave the impression that its greatest interest was in its contribution to basic principles. Now, with the era of atomic energy upon us, we all know that the genetic risks from the high-energy radiation threatening man, belong to the things I just mentioned, of vital and immediate importance to us all.

Experimental genetics is a branch of modern biology in which progress has been especially rapid. The methods and points of view of this and its allied disciplines are indispensable for many fields of medicine today. This rapidly increasing importance of experimental genetics and cell research is easily understood. The research is now reaching towards the very elements of heredity, the structures within each cell that control its life and its behavior, and thus ultimately determine the development of the whole organism. Now we begin to see what the fundamental biological processes may be. That discoveries in this field have consequences in many others is surely no surprise to any of us.

The work of all three winners of the prize lies on this plane. Their studies are concerned with the very basis of heredity and the manner in which the genes function. That hereditary characters are transmitted from parents to offspring via special elements in the ovum and spermatozoon, the so-called genes, has long been known. The organism that develops from the fertilized ovum receives certain of the parents' characters through these genes, and the genetic material in the fertilized egg, that is to say, all these genes combined, determines the development of the organism.

The cells that together constitute an organism as a rule contain a complete set of genes characteristic of the species. In ordinary cell division these are divided and subsequently distributed equally between the two daughter cells. At fertilization, the different genetic materials from two individuals unite in the fusion of the egg and the sperm. The result of the sexual reproduction is to provide offspring with genes from both of their parents. In this way, individuals with differing combinations of characters originate. And just herein lies the biologic value of the sexual process, which can be traced throughout practically the entire animal and plant kingdoms. Without the renewal such a constant recombination of characters involves, an animal or plant species would not be able to survive the struggle for existence.

The characters, which are transmitted by the genes from generation to generation, present a picture of bewildering multiplicity. This very multiplicity of the genes' effects made it difficult to attack experimentally the problem of their structure and manner of functioning; it was impossible to trace straightforward lines that could serve as a background for an experimental study.

The situation was radically changed by Beadle and Tatum, who, through a daring and astute selection of experimental material, created a possibility for a chemical attack upon the field. Circumstantial evidence pointed to a similarity of the genetic mechanisms throughout the entire plant and animal kingdoms. Beadle and Tatum selected as object for their investigations an organism with very simple structure, a bread mold, Neurospora crassa, which is far easier to work with, in many respects, than the objects usually studied in genetics. It is able to synthesize its body substances from a very simple culture medium: sugar, salts, and a growth factor. When cultures of the mold are exposed to X-ray irradiation, mutations - that is, changes in individual genes - result as they do in other organisms. By producing a large number of such mutations and by means of an analysis of the material, which should serve as a model for analytic research, Beadle and Tatum succeeded in demonstrating that the body substances are synthesized in the individual cell step by step in long chains of chemical reactions, and that genes control these processes by individually regulating definite steps in the synthesis chain. This regulation takes place through formation by the gene of special enzymes. If a gene is damaged, for example through irradiation-induced mutation, the chain is broken, the cell becomes defective - and may possibly be unable to survive. Even in the formation of comparatively simple substances the steps in the synthetic chain are many, and consequently the number of collaborating genes large. This explains simply why gene function appeared to be so impossibly complex. The discovery provides our best means of penetrating into the manner in which the genes work and has now become one of the foundations of modern genetics. Its importance extends over other fields as well, however.

Especially valuable is the possibility it affords for detailed study of the processes of chemical synthesis in the living organism. In Neurospora material it is easy by means of X-ray irradiation to produce quickly a large number of strains in which the function of different individual genes has been disturbed. By comparing these strains we are able to determine in detail how the different stages of synthesis succeed one another when the cell's substances are formed. Beadle and Tatum's technique has become one of our most important tools for the study of cell metabolism and has already yielded results of significance to various problems in the fields of medicine and general biology.

The successful results with Neurospora also provided an incentive to continued efforts to probe the basic processes further with the aid of even simpler organisms. The bacteria are even more primitive than Neurospora. The bacterial genetic mechanism was little known; many even doubted that they had one comparable with that of the higher forms of life. Tatum extended the approaches worked out in Neurospora to the bacteria. When Lederberg came to Tatum's laboratory as a young student, they discovered that different bacterial strains could be crossed to produce an offspring containing a new combination of genetic factors. This is the counterpart of the normal sexual fertilization in higher organism; it is usually considered preferable here, however, to speak of «genetic recombination». Bacterial genetics has been developed, primarily through the efforts of Lederberg and his coworkers, into an extensive research field in recent years. He also contributed further evidence that the genetic mechanism of the bacteria corresponds to that of the higher organisms. Moreover, thanks to their simple structure and extraordinarily rapid growth, bacteria provided new and excellent possibilities for a more profound study of the genetic mechanisms. Lederberg has made many contributions in this field. Particularly important is his discovery that sexual fertilization is not the only process leading to recombination of characters in bacteria. Bits of genetic material can, if they are introduced into the bacterial body, become part of the genetic material of the bacterial cell and thus change its constitution. This is usually termed «transduction», and it is the first example demonstrating that it is possible experimentally to manipulate an organism's genetic material and to introduce new genes into it and, the organism new characters. Studies in this are now being carried out in many laboratories in different parts of the world.

The transduction process and certain other related phenomena have greatly improved our means of penetrating experimentally into the basic processes of cell function and cell growth. In all probability they will also prove to have great significance in the study of the function of the higher organisms under normal and pathologic conditions. Work in this field, carried out in laboratories throughout the world, has already greatly expanded our knowledge of the basic processes in bacteriophage infection and of the mechanism of virus infection. The observations also have opened the way to a more profound understanding of certain growth problems. Certainly cancer research will be increasingly influenced by the evolution of our knowledge of the organization of the genetic material and its manner of functioning, that has been made possible by the discoveries of this year's three winners of the Nobel Prize in Physiology or Medicine.

Doctor Beadle and Doctor Tatum. In consequence of an exemplary collaboration in which each has complemented the other to unusual advantage, it has been given to you to make discoveries of fundamental importance to our understanding of the mechanism of Life's processes.

Doctor Lederberg. At first in collaboration with your co-winners of this year's Nobel Prize, and subsequently, along ever-broadening independent lines, you have made possible the advance of research to the structure of the actual genetic material.

Gentlemen. In recognition of your outstanding contributions to science the Karolinska Institute has awarded you this year's Nobel Prize in Physiology or Medicine. On behalf of the Institute I wish to extend the warmest congratulations from your colleagues on your brilliant achievements.

It is my honoured privilege now to invite you to receive your awards from the hands of His Majesty the King.


Tuesday, July 29, 2008

Talk.origins Is Back

 
The newsgroup talkorigins is back online. It's been down since last Friday but I wasn't aware of the problem until Sunday. I couldn't fix it myself so I had to get in touch with our esteemed king and moderator, DIG, and that took some time.

He has now fixed the problem so post away! Fortunately, there were no serious injuries except for John Wilkins, who was forced to drink scotch [Email hiatus].


Ohmygod! Not that "Framing" Thing again?

Yes, it's the old framing argument rearing its ugly head. I know, I know, we've probably said just about everything that could be said and we should just agree to disagree. Nisbet and Mooney want us to "spin" science in the interests of promoting their favorite policies. Scientists resist because that's not what science does.

Now we have a posting by Philip H. on The Intersection that makes the issue clearer than ever before. I'm sure Nisbet and Mooney are happy.

Philip H. is discussing a Washington Post article about American voters [The American Voter]. Here's what he says about the scientific aspects of the study ...
Equally interesting to me as a scientist and framer of scientific messages, is how the writer talked about the academic work she reported on. She talks about academic conclusions from a multi-year study "couched in academic understatement." My guess is the social scientists here were doing the usual, scientifically correct thing and describing their data and conclusions within the statistically appropriate confidence intervals. Probably something along the lines of: "our results appear to apply, statistically to the American population within a 95% probability. Alternately, bootstrapped ANCOVA without regression might have yielded..." That may be correct in a talk to the National Academy of Public Administration, but somehow it always leads newspaper reporters.... to wonder what the academics area really saying, and try to get "other sides" of the story. In other words - this is bad framing for an general audience. Thankfully, in this particular case, the "fairness in reporting" stchick works - and it contributes to the reporting. In the case of Creationism/Intelligent Design vs. Evolution, it doesn't.
This is a very important point, one that the "framers" have never made explicitly. The scientific reporting of information may be okay for scientists but when you're talking to non-scientists you've got to be non-scientific. The "scientifically correct" approach just won't do for the hoi-polloi.
I know, I know, scientists hate to make firm conclusions when the data do contain the possibility of error or omission. They even hate to make black and white statements when there is a really LOW probability of error. I took those courses too.
I'm so glad he took the courses. Now he knows how scientists are supposed to behave.
But this is a public policy debate. It is about how to get American voters more engaged, or if they can be more engaged. And if the truth is Americans are one or two issue voters who inherit their political allegiances like a house or a trust fund, those facts tells us something. And no one will fault the scientists for saying so directly, and with out describing the confidence interval.
It's not true that "no one will fault the scientists." I will fault the scientists for lying or distorting the scientific truth by omitting the qualifications. And I'm not alone. Many other scientists think the same way and that's why scientists are not jumping on the spin framing bandwagon (see Going Public with the Scientific Process for a better approach).


[Photo Credit: Blick Art Materials]

We're Really, Really Sorry

 
This is an old video from This Hour Has 22 Minutes. I'm sorry to be posting it now but GrrlScientist put it up on her blog and I just couldn't resist. Again, my sincere apologies to all my American friends for what Canada has done to you.






Epigenetics in New Scientist

 
As a general rule, the magazine New Scientist does an acceptable job of covering the issues that I'm familiar with. Sure, from time to time they screw up big time, but the good articles outweigh the bad.

The July 12-18 issue has one of the big time screw-ups. There is it on the cover, "Forget Genes: The strange inheritance from your parents." The article inside is by Emma Young, an Australian writer for New Scientist who has mostly specialized in stories about space. The title of the article in the magazine is "Strange Inheritance" and the title on the website is Rewriting Darwin: The new non-genetic inheritance
HALF a century before Charles Darwin published On the Origin of Species, the French naturalist Jean-Baptiste Lamarck outlined his own theory of evolution. A cornerstone of this was the idea that characteristics acquired during an individual's lifetime can be passed on to their offspring. In its day, Lamarck's theory was generally ignored or lampooned. Then came Darwin, and Gregor Mendel's discovery of genetics. In recent years, ideas along the lines of Richard Dawkins's concept of the "selfish gene" have come to dominate discussions about heritability, and with the exception of a brief surge of interest in the late 19th and early 20th centuries, "Lamarckism" has long been consigned to the theory junkyard.

Now all that is changing. No one is arguing that Lamarck got everything right, but over the past decade it has become increasingly clear that environmental factors, such as diet or stress, can have biological consequences that are transmitted to offspring without a single change to gene sequences taking place. In fact, some biologists are already starting to consider this process as routine. However, fully accepting the idea, provocatively dubbed the "new Lamarckism", would mean a radical rewrite of modern evolutionary theory. Not surprisingly, there are some who see that as heresy. "It means the demise of the selfish-gene theory," says Eva Jablonka at Tel Aviv University, Israel. "The whole discourse about heredity and evolution will change" (see "Rewriting Darwin and Dawkins?").
Ugh.

This is, of course, nonsense. The article is all about epigenetics but it's a very broad definition of epigenetics. One that makes you cringe when you read ...
Epigenetics deals with how gene activity is regulated within a cell - which genes are switched on or off, which are dimmed and how, and when all this happens. For instance, while the cells in the liver and skin of an individual contain exactly the same DNA, their specific epigenetic settings mean the tissues look very different and do a totally different job. Likewise, different genes may be expressed in the same tissue at different stages of development and throughout life. Researchers are a long way from knowing exactly what mechanisms control all this, but they have made some headway.
Some headway? That's quite an understatement isn't it? Emma Young then goes on to describe some of that mysterious headway. Turns out that methylation of DNA, histone modification, and RNAi are the prime suspects in the upcoming paradigm shift. Who woulda guessed?

According to the New Scientist article, there are a host of scientists who are ready to abandon the gene as the unit of evolution. These include Eva Jablonka from Tel Aviv University, Israel and Russell Bonduriansky, at the University of New South Wales in Sydney, Australia. But wait. What does Richard Dawkins have to say about this?
For Bonduriansky the accumulating evidence calls for a radical rethink of how evolution works. Jablonka, too, believes that "Lamarckian" mechanisms should now be integrated into evolutionary theory, which should focus on mechanisms, rather than units, of inheritance. "This would be very significant," she says. "It would reintroduce development, in a very direct and strong sense, into heredity and hence evolution. It would mean the pre-synthesis view of evolution, which was very diverse and very rich, can return, but with molecular mechanisms attached."

That needn't necessarily mean an end to the idea of the gene as the basic unit of inheritance, or Richard Dawkins's selfish gene, according to some. "I don't think it violates the basic concept that Dawkins articulated," says Eric Richards, at Washington University in St Louis, Missouri. "Epigenetic marks can also be viewed as part of that basic unit in a more inclusive definition of a gene," he says.

What does Dawkins himself think? "The 'transgenerational' effects now being described are mildly interesting, but they cast no doubt whatsoever on the theory of the selfish gene," he says. He suggests, though, that the word "gene" should be replaced with "replicator". This selfish replicator, acting as the unit of selection, does not have to be a gene, but it does have to be replicated accurately, the occasional mutation aside. "Whether [epigenetic marks] will eventually be deemed to qualify as 'selfish replicators' will depend upon whether they are genuinely high-fidelity replicators with the capacity to go on for ever. This is important because otherwise there will be no interesting differences between those that are successful in natural selection and those that are not." If all the effects fade out within the first few generations, they cannot be said to be positively selected, Dawkins points out.
That's a relief. All epigenetic phenomena are unstable and/or reversible and Dawkins isn't buying any of this pseudoscientific nonsense about its effect on evolution. Now if we could only convince the science writers to pay more attention to the skeptics and less attention to the self-serving "revolutionaries."


Epigenetics Revisited

I'm still struggling with the concept of epigenetics [see Epigenetics]. Most of the modern definitions are so broad that they become meaningless. It's impossible to distinguish between epigenetics and plain old regulation of gene expression.

One of my colleagues, Craig Smibert, was so annoyed by my questions about epigenetics that he pointed me to a series of articles in Nature in the hopes it would shut me up. The relevant article is Perception of Epigenetics by Adrian Bird (Bird 2007).

It's not going to help. After describing several examples like methylation and histone modifications, Bird then points out that these modifications are not necessarily stable ...
So how accurately transmitted should an epigenetic mark be? Variation due to faulty copying is compounded by current evidence that all histone modifications, as well as DNA methylation itself, can be abruptly removed during development, thereby preventing the persistence of these modifications in a heritable epigenetic sense.
In other words, an epigenetic phenomenon doesn't really need to be heritable in order to qualify as epigenetic.

Furthermore, an epigenetic phenomenon doesn't even have to be passed on to progeny to qualify.
The restrictiveness of the heritable view of epigenetics is perhaps best illustrated by considering the brain. A growing idea is that functional states of neurons, which can be stable for many years, involve epigenetic phenomena, but these states will not be transmitted to daughter cells because almost all neurons never divide.
That's not very helpful. It's beginning to look like any activation or repression of eukaryotic genes will count as epigenetics. (According to some, it doesn't have to be eukaryotes. There is epigenetic regulation in bacteria as well, Casadesús and Low (2006).)

Here's the definition ...
Given that there are several existing definitions of epigenetics, it might be felt that another is the last thing we need. Conversely, there might be a place for a view of epigenetics that keeps the sense of the prevailing usages but avoids the constraints imposed by stringently requiring heritability. The following could be a unifying definition of epigenetic events: the structural adaptation of chromosomal regions so as to register, signal or perpetuate altered activity states.
Does this include simple activation and repression of genes during development in the manner of control of lac operon expression? You betcha.

Bird may be thinking mostly of histone modifications and DNA methylation but he's well aware of the fact that these are often consequences, not causes, of activation and repression. He says,
For example, transcriptional activation through sequence-specific DNA-binding proteins brings in histone acetyltransferases, which then epigenetically adapt the promoter region for transcription (for histone acetyl groups, although ephemeral, would now be epigenetic).
So we're right back where we started, Craig will not be happy. Just about anything that modifies or regulates gene expression in eukaryotes (multicellular?) counts as epigenetics.

One could ask, what's the point? Why create a special word to describe regulation of gene expression in eukaryotes (and prokarotes) using mechanisms that we've known about for thirty years?


Bird, A. (2007) Perceptions of epigenetics. Nature 447:396-398. [doi:10.1038/nature05913]

Casadesús, J. and Low, D. (2006) Epigenetic Gene Regulation in the Bacterial World. Microbiology and Molecular Biology Reviews 70:830-856. [doi:10.1128/MMBR.00016-06

What Breed of Liberal Are You?

 



[Hat Tip: Mike Dunford (Social Justice Crusader)]

Monday, July 28, 2008

Monday's Molecule #82

 
Today's molecule isn't exactly a molecule. Your task is to figure out what's going on in the photograph. Be as specific as possible using proper terminology—remember, this is a family blog.

There's a connection between today's molecule and a Nobel Prize. Sometimes I just can't identify a molecule that points to a Nobel Laureate so I have to use something else. This is going to get harder and harder as I run out of "easy" Nobel Prizes.

The first person to correctly identify what's happening in the photo and name the Nobel Laureate(s), wins a free lunch at the Faculty Club. Previous winners are ineligible for one month from the time they first collected the prize. There are three ineligible candidates for this week's reward. You know who you are.

THEME:

Nobel Laureates
Send your guess to Sandwalk (sandwalk (at) bioinfo.med.utoronto.ca) and I'll pick the first email message that correctly identifies the molecule and names the Nobel Laureate(s). Note that I'm not going to repeat Nobel Laureate(s) so you might want to check the list of previous Sandwalk postings by clicking on the link in the theme box.

Correct responses will be posted tomorrow. I may select multiple winners if several people get it right.

Comments will be blocked for 24 hours. Comments are now open.

UPDATE: The winner is Steve Matheson who knew that the photograph represented conjugating bacteria (group sex) and the Nobel Laureate is Joshua Lederberg (1958). Congratulations Steve!


[Photo Credit: Researchers Trade Insights About Gene Swapping by Elizabeth Pennasi Science 305:334 - 335. DOI: 10.1126/science.305.5682.334]

Postmodernism and the Two Cultures

John Wilkins at Evolving Thoughts has some comments about the "two cultures" debate [see Cocktail Parties and the Two Cultures].

While most scientists see the problem as a lack of respect for science, John examines the other side of the coin. Noting that the Sokal Affair often comes up in these discussion, John reacts to the criticism of postmodernism implicit in that reference. It's true that most scientists agree with Alan Sokal that the worst form of postmodernism is an embarrassment to all disciplines, not just the humanities. However, it's also true that humanities (e.g. English, Sociology, Psychology) have been far more lax than the sciences when it comes to intellectual rigor. In that sense, the humanities have lost respect.

John attempts to explain the good things about postmodernism. I understand his point, although I think might be protesting just a bit too much. He concludes with,
There is a cultural divide between the humanities and the sciences, but it is not a simple one. It has to do, ultimately, with respect. The division is between those who respect science, and those who respect the humanities (and the other human-related subjects, like social science, political science and so on). Yes, we in the humanities treat science like a text. This is because, as we are not doing science, we interface with that vibrant tradition via the texts of science, mostly. And we are being, as philosophers, very "meta" about science - that is, we are discussing its discussions, and reflecting upon its reflections. Textualisation is impossible to avoid, although one can correct for it. But some of us respect science. We respect it for the same reason that Locke, Hume, Kant and Mill respected science - it is where the knowledge is gathered (or made, or constructed out of data, etc.), so it is the single most important part of human cognition and social organisation to a philosopher.
Anyone who has spent much time wading through the pious, obscurantist, jargon-filled cant that now passes for 'advanced' thought in the humanities knew it was bound to happen sooner or later: some clever academic, armed with the not-so-secret passwords ('hermeneutics,' 'transgressive,' 'Lacanian,' 'hegemony,' to name but a few) would write a completely bogus paper, submit it to an au courant journal, and have it accepted . . . Sokal's piece uses all the right terms. It cites all the best people. It whacks sinners (white men, the 'real world'), applauds the virtuous (women, general metaphysical lunacy) . . . And it is complete, unadulterated bullshit – a fact that somehow escaped the attention of the high-powered editors of Social Text, who must now be experiencing that queasy sensation that afflicted the Trojans the morning after they pulled that nice big gift horse into their city.

Gary Kamiya
Yes, it's all about respect. However, I still think scientists are feeling more like Rodney Dangerfield1 than the average sociologist or philosopher. The way I see it, philosophers and others in the humanities often have a very narrow view of science. It's not that they treat science as just another human endeavor, which is bad enough, it's that they treat science as something that's not a part of their disciplines. This exact point is addressed in a lecture Alan Sokal gave earlier this year [What is science and why should we care?]. "Science" is not just about rocket ships and natural selection, it's a way of thinking. A way of thinking that people in the humanities would be wise to adopt. Sokal says,
At a superficial level you could say that my topic is the relation between science and society; but as I hope will become clear, my deeper theme is the importance, not so much of science, but of the scientific worldview—a concept that Ishall define more precisely in a moment, and which goes far beyond the specific disciplines that we usually think of as "science"—in humanity's collective decision making. I want to argue that clear thinking, combined with a respect for evidence—especially inconvenient and unwanted evidence that challenges our preconceptions—are of the utmost importance to the survival of the human race in the twenty-first century.

Of course, you might think that calling for clear thinking and a respect for evidence is a bit like advocating Motherhood and Aple Pie (if you'll pardon this Americanism)—and in a sense you'd be right. Hardly anyone will openly defend muddled thinking or disrespect for evidence. Rather, what people do is to surround these practices with a fog of verbiage designed to conceal from their listeners—and in most cases, I would imagine, from themselves as well—the true implications of their reasoning.
Sokal has it right, as far as I'm concerned. The war between the two cultures is not just about whether you've read Shakespeare or Einstein, it's about how you think. Either you adopt the scientific worldview that values evidence and rationality, or you practice some form of superstition. In this sense, the humanities are just a part of science and not a separate way of knowing.

Sokal emphasizes this point again and again.
I stress that my use of the term "science" is not limited to the natural sciences, but includes investigations aimed at acquiring accurate knowledge of factual matters relating to any aspect of the world by using rational empirical methods analogous to those employed in the natural sciences.
I don't think John Wilkins would agree with this perspective since it makes philosophy—and all other humanties—just a part of a scientific worldview.2

John continues with his analysis of the two cultures problem.
Scientists often do not respect humanists, either. It is a running gag that PZ or Larry Moran will tweak me and others for being mere philosophers, but the gag is that most scientists really do think philosophy is a waste of funds and office space. Likewise they think the same thing about literary studies, history, social sciences, and in fact everything that is not their own speciality. It's not hard to see this as special pleading, but if scientists want respect, they had better show some. It's not impossible: Ed Wilson and Stephen Jay Gould are just two examples of scientists who - for all their faults - respect the humanities. Nobody has the time or energy (or mental capacity) to become experts in both fields; there's barely enough time to become expert in one subspeciality of one discipline of one field); but we can respect those who do learn those limited domains even if they are not our own. This is a plea for respect too, between the analytic and continental styles of philosophy. Neither is totally stupid nor totally on track. Rather than reject the other styles, perhaps what we should do is mutually support each other to do what we do well.
For the record, I'm much closer to Gould on this issue that it appears. I have a great deal of respect for philosophy, provided that it's done correctly. I would strongly support making philosophy and the study of logic a mandatory course in every university. Similarly, there is much to be learned about human behavior—and, let's face it, we are all interested in ourselves even if we know that we are just one species out of ten million—by studying sociology, English literature, and art history. The problem isn't lack of respect for the subject matter as much as lack of respect for the way the subjects are studied.

I'd also like to point out that I'm an equal opportunity curmudgeon—the best kind, in my opinion. While I don't hesitate to point out the muddle-headedness of philosophers like Michael Ruse and Daniel Dennett who pretend to be scientists, I also don't hesitate to make fun of scientists like Ken Miller and Francis Collins who abuse science to support religion.

In the war between rationalism and superstition there are many in the humanities who are on the wrong side. But there are lots of scientists who are wrong as well. I still think that, as a general proposition, there's more respect for the humanities out there than for science. Our society is educating an entire generation of scientific illiterates who are not only unknowledgeable about basic concepts in science but, in most cases, still quite proud of their ignorance.

The next time you hear someone say that science or math is way too hard for them, you should express your sympathy by saying, "Gee, I'm sorry you're too stupid to understand these things. What can I do to help?"


1. or Aretha Franklin

2. To put it even more bluntly. All of the humanities is simply concerned with the behavior of one particular species on this planet. It's just one tiny part of life on this planet, which, in turn, is an infinitesimally small part of the universe. Those who think that the philosophy of Plato is more important than understanding evolution have their priorities all screwed up.

Cocktail Parties and the Two Cultures

I can't tell you how many times I've been in the company of "intellectuals" who can discuss at great length their operatic preferences or how many novels by Gabriel García Márquez they've read, but who don't know what DNA is or which planet is closest to Earth. In many cases these "intellectuals" seem to be downright proud of the fact that they "can't do math." Scientific ignorance is not a only acceptable among this group but seems to be almost a badge of honor.

Imagine the response if one were at a cocktail party and admitted that you didn't know who Gabriel García Márquez was, and what's more, you don't care.1 The concept of two cultures, science and humanities, isn't new—it dates from the time of the scientific revolution almost 500 years ago. The conflict is almost always characterized as the lack of respect shown by humanities toward science. Here's how C.P. Snow put it in his writings on The Two Cultures.
A good many times I have been present at gatherings of people who, by the standards of the traditional culture, are thought highly educated and who have with considerable gusto been expressing their incredulity at the illiteracy of scientists. Once or twice I have been provoked and have asked the company how many of them could describe the Second Law of Thermodynamics. The response was cold: it was also negative. Yet I was asking something which is the scientific equivalent of: Have you read a work of Shakespeare's?

I now believe that if I had asked an even simpler question -- such as, What do you mean by mass, or acceleration, which is the scientific equivalent of saying, Can you read? -- not more than one in ten of the highly educated would have felt that I was speaking the same language. So the great edifice of modern physics goes up, and the majority of the cleverest people in the western world have about as much insight into it as their neolithic ancestors would have had.
Much has been written on this topic including a book by Stephen Jay Gould (The Hedgehog, the Fox, and the Magister's Pox) that has to be the most useless contribution to the debate that has ever been published. (I say this as an unabashed fan of Gould.)

Two bloggers have recently re-opened the debate. Chad Orzel at Uncertain Principles got the ball rolling with The Innumeracy of Intellectuals and Janet Stemwedel (Adventures in Ethics) picked up on the discussion with Fear and loathing in the academy. The latest contribution from Janet is Assorted hypotheses on the science-humanities divide, in which she offers several hypotheses to explain the two cultures problem.23

The comments on both sites are interesting. They bring up related issues such as why do we have courses like "Astronomy for Dummies" and "Science for Poets" while all science majors take pretty much the same courses as the humanities students. You don't usually find examples of dumbed down philosophy courses for biologists.

What's so amazing is that Janet even has one commenter (Shawn) who's willing to defend the superiority of the humanities over the sciences. Here's part of his comment ...
As for the topic generally: it really speaks to the elitism in the hard sciences that everyone from the "science side" is more than happy (either implicitly or explicitly) to lump the soft sciences in with fine arts and literature without batting an eye. It's also rather ironic that many people on the "science side" of this debate seem to have no problem with trotting out tired cliches, culture war bugaboos, and fourth hand anecdotes to shore up their, frankly childish, arguments regarding the irrelevancy of the humanities.

Everything from ascot-ed and monocled patricians, to post-modern mandarins, to smug artsy conformists, a rouges gallery of stereotypes and cartoons presented as if it were actual evidence. But I guess what do you expect from a bunch of nerds who have no knowledge of real life. (See? It's such an easy game to play.)

Yes, of course science saves lives and makes life better, but the actual business of living, 90% of the lifespan of the overwhelming majority of humans is dominated by subjects connected to the realm of humanities. The internet is the product of science and engineering (and massive government/tax-payer funded research), but in the end it's merely a vehicle for people to conduct their lives and maybe (or maybe not) enrich their lives. Science certainly can save your life, but the humanities make it worth living.

The humanities IS civilization and civilization is the sciences' natural habitat. Science is in fact inconceivable without the humanities.
This could be fun.


1. That doesn't apply to me. I know who he is, and I just don't care. His main claim to fame is that he got his Nobel Prize the same year as Bergström, Samuelsson, and Vane and Aaron Klug.

2. As you might have guessed, this debate was way too tempting for John Wilkins. He has weighed in with philosopher's take on the subject: What philosophy of science and "postmodernism" have in common. John has some interesting things to say but I'll deal with them in a separate posting.

3. Razib at Gene Expression contributes: Humanities "vs." science.

[Image Credit: The cartoon is by Serge Bloch from The New York Times via Can the “Two Cultures” Become One Again?]