More Recent Comments

Showing posts with label Science. Show all posts
Showing posts with label Science. Show all posts

Sunday, January 18, 2026

These AI predictions are becoming ridiculous!

The first issue of Nature in 2026 has an article by science writer David Adam.

The Science of 2050
Nature explores the future breakthroughs that could shape our world.

The online version has a different title and subtitle but the text is the same. It begins with a quote from "futurologist" Nick Bostrum.

“There’s a good likelihood that by 2050, all scientific research will be done by superintelligent AI rather than human researchers. Some humans might do science as a hobby, but they wouldn’t be making any useful contributions.”

There's no attempt in the article to apply critical thinking to such a ridiculous prediction and the author doesn't consider the implications. If Bostrum (whoever that is) is right then that's the end of graduate studies and after 2050 nobody will be getting a Ph.D. in physics, biology, geology, or chemistry.

I hope I live long enough to see AI collecting and analyzing fossils in Greenland or studying volcanoes in Hawaii. Maybe I'll still be around when AI figures out how memories are stored or which transcription factor binding sites are functional in the human genome. And if I'm very, very lucky I'll see live to see all of my colleagues in the Department of Biochemistry abandon their labs and take up some scientific hobby like alchemy or intelligent design.

David Adam and the editors of Nature should be ashamed of themselves for publishing such nonsense.


Saturday, January 17, 2026

Teaching the nature of science vs the scientific method

There's been a lot of talk about how to teach science literacy. The discussion in the USA centers around STEM (science, engineering, technology, mathematics) and this acronym has also spread to other countries. It's an unfortunate development since there's a big difference between teaching science and teaching those other three topics.

Most studies suggest that we focus on teaching The Nature of Science (NOS). There's no definition of this topic that everyone agrees to but the essence is that students need to understand how our society generates knowledge. In the context of the natural sciences, this means understanding the process of discovery. There's general agreement that what this means is critical thinking that's evidence-based. It's another way of saying that we need to teach critical thinking and the importance of using evidence to back up and test your claims of knowledge. "Appreciating the scientific process can be even more important than knowing scientific facts. People often encounter claims that something is scientifically known. If they understand how science generates and assesses evidence bearing on these claims, they possess analytical methods and critical thinking skills that are relevant to a wide variety of facts and concepts and can be used in a wide variety of contexts.”

National Science Foundation, Science and Technology Indicators, 2008

The reasoning behind this emphasis is based on two pedagogical facts. The first is that it's impossible to teach all the facts and theories of a typical scientific discipline like astronomy or geology. It's pointless to make students memorize information that they will forget as soon as the class is over, Instead, as the argument goes, we need to teach students to understand how evidence is gathered and how it becomes fact. Teach students how to appreciate science and its power to create knowledge. That's something that will stick with them all their lives.

Thursday, July 17, 2025

Predatory journals are helping to spread misinformation in the scientific literature

At the end of last year (2024) I posted an article about distinguished molecular biologist William Hasletine who published an article in Forbes about A New Dogma Of Molecular Biology: A Paradigm Shift. The article was about overthrowing the Central Dogma of Molecular Biology because of the discovery of thousands of non-coding genes. There is no paradigm shift. It's a paradigm shaft. [William Haseltine misrepresents molecular biology and calls for a paradigm shift]

Wednesday, February 05, 2025

Why Trust Science?

Bruce Alberts,1 Karen Hopkin, and Keith Roberts have published an essay on Why Trust Science.

In this essay, we address the question of why we can trust science—and how we can identify which scientific claims we can trust. We begin by explaining how scientists work together, as part of a larger scientific community, to generate knowledge that is reliable. We describe how the scientific process builds a consensus, and how new evidence can change the ways that scientists—and, ultimately, the rest of us—see the world. Last, but not least, we explain how, as informed citizens, we can all become “competent outsiders” who are equipped to evaluate scientific claims and are able to separate science facts from science fiction.

Most of the essay describes an idealized version of how science works with an emphasis on collaboration and rigorous oversight. They claim that the work of scientists can usually be trusted because it is self-correcting.

Friday, September 20, 2024

Should Scientific American endorse United States political candidates?

Scientific American has endorsed Kamala Harris, a candidate for president of the United States. I think this is a mistake and so do many other scientists and even journalists [Scientific American Didn’t Need to Endorse Anybody].

I agree with those who say that science should stay out of politics as much as possible. But this is just one of many indications that Scientific American is sliding rapidly downhill and no longer qualifies as a real science magazine.


Monday, March 18, 2024

Western scientists should continue to cooperate with Chinese scientists

China has become a science powerhouse and it achieved this goal, in part, by sending its young scientitsts abroad to train in universities in Canada, Australia, United States, and Europe. Many of these countries have signed scientific cooperation agreements with China but some of those agreements are in danger of lapsing as China is increasingly seen as an untrustworthy enemy.

Friday, March 03, 2023

Do you understand the scientific literature?

I'm finding it increasingly difficult to understand the scientific literature even in subjects that I've been following for decades. Is it just because I'm getting too old to keep up?

Here's an example of a paper that I'd like to understand but after reading the abstract and the introduction I gave up. I'll quote the first paragraph of the introduction to see if any Sandwalk readers can do better.

I'm not talking about the paper being a complete mystery; I can figure out roughly what's it's about. What I'm thinking is that the opening paragraph could have been written in a way that makes the goals of the research much more comprehensible to average scientifically-literate people.

Weiner, D. J., Nadig, A., Jagadeesh, K. A., Dey, K. K., Neale, B. M., Robinson, E. B., ... & O’Connor, L. J. (2023) Polygenic architecture of rare coding variation across 394,783 exomes. Nature 614:492-499. [doi = 10.1038/s41586-022-05684-z]

Genome-wide association studies (GWAS) have identified thousands of common variants that are associated with common diseases and traits. Common variants have small effect sizes individually, but they combine to explain a large fraction of common disease heritability. More recently, sequencing studies have identified hundreds of genes containing rare coding variants, and these variants can have much larger effect sizes. However, it is unclear how much heritability rare variants explain in aggregate, or more generally, how common-variant and rare-variant architecture compare: whether they are equally polygenic; whether they implicate the same genes, cell types and genetically correlated risk factors; and whether rare variants will contribute meaningfully to population risk stratification.

The first question that comes to mind is whether the variant that's associated with a common disease is the cause of that disease or merely linked to the actual cause. In other words, are the associated variants responsible for the "effect size"? It sounds like the answer is "yes" in this case. Has that been firmly esablished in the GWAS field?


Thursday, February 16, 2023

Birds of a feather: epigenetics and opposition to junk DNA

There's an old saying that birds of a feather flock together. It means that people with the same interests tend to associate with each other. It's extended meaning refers to the fact that people who believe in one thing (X) tend to also believe in another (Y). It usually means that X and Y are both questionable beliefs and it's not clear why they should be associated.

I've noticed an association between those who promote epigenetics far beyond it's reasonable limits and those who reject junk DNA in favor of a genome that's mostly functional. There's no obvious reason why these two beliefs should be associated with each other but they are. I assume it's related to the idea that both beliefs are presumed to be radical departures from the standard dogma so they reinforce the idea that the author is a revolutionary.

Or maybe it's just that sloppy thinking in one field means that sloppy thinking is the common thread.

Here's an example from Chapter 4 of a 2023 edition of the Handbook of Epigenetics (Third Edition).

The central dogma of life had clearly established the importance of the RNA molecule in the flow of genetic information. The understanding of transcription and translation processes further elucidated three distinct classes of RNA: mRNA, tRNA and rRNA. mRNA carries the information from DNA and gets translated to structural or functional proteins; hence, they are referred to as the coding RNA (RNA which codes for proteins). tRNA and rRNA help in the process of translation among other functions. A major part of the DNA, however, does not code for proteins and was previously referred to as junk DNA. The scientists started realizing the role of the junk DNA in the late 1990s and the ENCODE project, initiated in 2003, proved the significance of junk DNA beyond any doubt. Many RNA types are now known to be transcribed from DNA in the same way as mRNA, but unlike mRNA they do not get translated into any protein; hence, they are collectively referred to as noncoding RNA (ncRNA). The studies have revealed that up to 90% of the eukaryotic genome is transcribed but only 1%–2% of these transcripts code for proteins, the rest all are ncRNAs. The ncRNAs less than 200 nucleotides are called small noncoding RNAs and greater than 200 nucleotides are called long noncoding RNAs (lncRNAs).

In case you haven't been following my blog posts for the past 17 years, allow me to briefly summarize the flaws in that paragraph.

  • The central dogma has nothing to do with whether most of our genome is junk
  • There was never, ever, a time when knowledgeable scientists defended the idea that all noncoding DNA is junk
  • ENCODE did not "prove the significance of junk DNA beyond any doubt"
  • Not all transcripts are functional; most of them are junk RNA transcribed from junk DNA

So, I ask the same question that I've been asking for decades. How does this stuff get published?


Monday, January 02, 2023

Jupiter weighs two quettagrams

New names for very large and very small weights and sizes have been adopted.

Last November's meeting of the General Conference on Weights and Measures wasn't covered by the major media outlets so you probably don't know that the mass of an electron is now one rontogram and the diameter of the universe is about one ronnameter [SI units get new prefixes for huge and tiny numbers].1

The official SI prefixes for very large things are now ronna (1027) and quetta (1030) and the prefixes for very small things are ronto (10-27) and quecto (10-30).

This is annoying because we've just gotten used to zetta, yotta, zepto, and yocto (adopted in 1991). I suspect that the change was prompted by the huge storage capacity of your latest smartphone (several yottabytes) and the wealth of the world's richest people (several zeptocents). Or maybe it was the price of houses in Toronto. Or something like that. In any case, we needed to prepare for kilo or mega increases.

The bad news is that the latest additions used up the last two available letters of the alphabet so if things get any bigger or smaller we may have to add a few more letters to the alphabet.


1. A friendly reader has pointed out that my title should have been "The mass of Jupiter is two quettagrams." My bad.

Friday, December 16, 2022

Publishing a science book - Lesson #1: The publisher is always right about everything

Don't bother trying to reason with a publisher. All of them have different views on proper style and every single one of them is absolutely certain that their style is the only correct one.

I'm in the middle of the copyedit stage of my book. This is the stage where a copyeditor goes through your manuscript and makes any corrections to spelling and grammar. This is a lot of work for any copyeditor having to deal with one of my manuscripts and I greatly appreciate the effort. My book is a lot better now than it was a few weeks ago. (Who knew that there was only one l in canceled?)

It's also the stage where the publisher imposes their particular style on the manusript and that can be a problem. I'll document some of the issues in subsequent posts but to give you an example, consider the titles of books in the reference list. I wrote it like this: The Selfish Gene and Molecular and Genome Evolution. This is not in line with my publisher's handbook of style so the titles were converted to lowercase as in: The selfish gene and Molecular and genome evolution. I objected, pointing to numerous other science books that used the same titles that are on the covers of the books and suggesting that my readers were more familiar with The Selfish Gene than with The selfish gene.

I was overruled by my publisher who noted that they make their style choices for good reasons—it's for "consistency, clarity, and ease of reading." I assume that publishers, such as Oxford, would make the same argument while insisting that the title should be The Selfish Gene.

In case you ever find yourself in this position, you should keep in mind that your contract will almost certainly say that the publisher has complete control of your book and they can make any changes they want as long as it doesn't affect the meaning of what you wrote.

Here's what it says in my contract, "The Publisher shall publish the Author's work in whatever style and format it thinks most suitable ... While the Publisher may, in its sole discretion, consult the Author with respect to said style and format, the Publisher retains the right to make all final decisions on matters of format, design, selling price and marketing."

I was aware of some issues with inappropriate covers and tiles in the past so I had an extra sentence added to the contract that said, "The Publisher and Author will discuss and agree upon the title and cover design." It's a good thing I put that in because the publisher was pressuring me to change the title of the book and I was able to resist.

Authors can't win most fights over style and format. I've been discussing the publishing of science books with a number of other authors over the past few months and several of them told me not to bother trying to argue with a publisher because they will never give in. They have a set style for all books and they won't make an exception for an individual author no matter how good an argument you make.

I didn't listen to those other authors. Silly me.

I'm thinking of trying to write a standard set of guidelines that scientists could put into their contracts to cover the most egregious style restrictions. It might be helpful if all science writers would insist on inserting these guidelines into their contracts.


Monday, November 21, 2022

How not to write a Nature abstract

A friend recently posted a figure on Facebook that instructs authors in the correct way to prepare a summary paragraph (abstract) for publication in Nature. It uses a specific example and the advice is excellent [How to construct a Nature summary paragraph].

I thought it might be fun to annotate a different example so I randomly selected a paper on genomics to see how it compared. The one that popped up was An integrated encyclopedia of DNA elements in the human genome.


Monday, March 15, 2021

Is science the only way of knowing?

Most of us learned that science provides good answers to all sort of questions ranging from whether a certain drug is useful in treating COVID-19 to whether humans evolved from primitive apes. A more interesting question is whether there are any limitations to science or whether there are any other effective ways of knowing. The question is related to the charge of "scientism," which is often used as a pejorative term to describe those of us who think that science is the only way of knowing.

I've discussed these issue many times of this blog so I won't rehash all the arguments. Suffice to say that there are two definitions of science; the broad definition and the narrow one. The narrow definition says that science is merely the activity carried out by geologists, chemists, physicists, and biologists. Using this definition it would be silly to say that science is the only way of knowing. The broad definition can be roughly described as: science is a way of knowing that relies on evidence, logic (rationality), and healthy skepticism.

The broad definition is the one preferred by many philosophers and it goes something like this ...

Unfortunately neither "science" nor any other established term in the English language covers all the disciplines that are parts of this community of knowledge disciplines. For lack of a better term, I will call them "science(s) in the broad sense." (The German word "Wissenschaft," the closest translation of "science" into that language, has this wider meaning; that is, it includes all the academic specialties, including the humanities. So does the Latin "scientia.") Science in a broad sense seeks knowledge about nature (natural science), about ourselves (psychology and medicine), about our societies (social science and history), about our physical constructions (technological science), and about our thought construction (linguistics, literary studies, mathematics, and philosophy). (Philosophy, of course, is a science in this broad sense of the word.)

Sven Ove Hanson "Defining Pseudoscience and Science" in Philosophy of Pseudescience: Reconsidering the Demarcation Problem.

Friday, March 12, 2021

Is science a social construct?

Richard Dawkins has written an essay for The Spectator in which he says,

"[Science is not] a social construct. It’s simply true. Or at least truth is real and science is the best way we have of finding it. ‘Alternative ways of knowing’ may be consoling, they may be sincere, they may be quaint, they may have a poetic or mythic beauty, but the one thing they are not is true. As well as being real, moreover, science has a crystalline, poetic beauty of its own.

The essay is not particularly provocative but it did provoke Jerry Coyne who pointed out that, "The profession of science" can be contrued as a social construct. In this sense Jerry is agreeing with his former supervisor, Richard Lewontin1 who wrote,

"Science is a social institution about which there is a great deal of misunderstanding, even among those who are part of it. We think that science is an institution, a set of methods, a set of people, a great body of knowledge that we call scientific, is somehow apart from the forces that rule our everyday lives and tha goven the structure of our society... The problems that science deals with, the ideas that it uses in investigating those problems, even the so-called scientific results that come out of scientific investigation, are all deeply influenced by predispositions that derive from the society in which we live. Scientists do not begin life as scientists after all, but as social beings immersed in a family, a state, a productive structure, and they view nature through a lens that has been molded by their social structure."

Coincidently, I just happened to be reading Science Fictions an excellent book by Stuart Ritchie who also believes that science is a social construct but he has a slighly different take on the matter.

"Science has cured diseases, mapped the brain, forcasted the climate, and split the atom; it's the best method we have of figuring out how the universe works and of bending it to our will. It is, in other words, our best way of moving towards the truth. Of course, we might never get there—a glance at history shows us hubristic it is to claim any facts as absolute or unchanging. For ratcheting our way towards better knowledge about the world, though, the methods of science is as good as it gets.

But we can't make progress with those methods alone. It's not enough to make a solitary observation in your lab; you must also convince other scientists that you've discovered something real. This is where the social part comes. Philosophers have long discussed how important it is for scientists to show their fellow researchers how they came to their conclusions.

Dawkins, Coyne, Lewontin, and Ritchie are all right in different ways. Dawkins is talking about science as a way of knowing, although he restricts his definition of science to the natural sciences. The others are referring to the practice of science, or as Jerry Coyne puts it, the profession. It's true that the methods of science are the best way we have to get at the truth and it's true that the way of knowing is not a social construct in any meanigful sense.

Jerry Coyne is right to point out that the methods are employed by human scientists (he's also restricting the practice of science to scientists) and humans are fallible. In that sense, the enterprise of (natural) science is a social construct. Lewontin warns us that scientists have biases and prejudices and that may affect how they do science.

Ritchie makes a diffferent point by emphasizing that (natural) science is a collective endeavor and that "truth" often requires a consensus. That's the sense in which science is social. This is supposed to make science more robust, according to Ritchie, because real knowledge only emerges after carefull and skeptical scrutiny by other scientists. His book is mostly about how that process isn't working and why science is in big trouble. He's right about that.

I think it's important to distinguish between science as a way of knowing and the behavior and practice of scientists. The second one is affected by society and its flaws are well-known but the value of science as way of knowing can't be so easily dismissed.


1. The book is actually a series of lectures (The Massey Lectures) that Lewontin gave in Toronto (Ontario, Canada) in 1990. I attended those lectures.

Thursday, December 31, 2020

On the importance of controls

When doing an exeriment, it's important to keep the number of variables to a minimum and it's important to have scientific controls. There are two types of controls. A negative control covers the possibility that you will get a signal by chance; for example, if you are testing an enzyme to see whether it degrades sugar then the negative control will be a tube with no enzyme. Some of the sugar may degrade spontaneoulsy and you need to know this. A positive control is when you deliberately add something that you know will give a positive result; for example, if you are doing a test to see if your sample contains protein then you want to add an extra sample that contains a known amount of protein to make sure all your reagents are working.

Lots of controls are more complicated than the examples I gave but the principle is important. It's true that some experiments don't appear to need the appropriate controls but that may be an illusion. The controls might still be necessary in order to properly interpret the results but they're not done because they are very difficult. This is often true of genomics experiments.

Friday, April 06, 2018

Cafe Scientific Mississauga: The Good, Bad, & Natural

Dan Riskin: The Good, Bad, & Natural: What Mother Nature says
about morality?


Thursday, April 12, 2018
7:30 - 10:00 pm
The Franklin House
263 Queen Street S
Streetsville (Mississauga), Ontario, Canada

"People often act like “natural” is synonymous with “good.” Using heinous examples from the scientific literature, Dan Riskin will blow the hinges off that misconception. Then he’ll give some thoughts about where, if not from nature, the roots of human morality might lie.

Dan Riskin, PhD, is a television personality, scientist, author, and podcaster. He is best known as the co-host of Discovery's flagship science program, Daily Planet, and as the host of Animal Planet's show about parasites, Monsters Inside Me. To make science accessible and interesting to wide audiences, Dan has appeared as a guest on The Tonight Show with Jay Leno, The Late Late Show with Craig Ferguson, The Dr. Oz Show, and on several news outlets, including CP24, CTV, CNN, and CBS. Dan has published more than 20 papers in scientific journals, and his first popular book, Mother Nature is Trying to Kill You was a Canadian bestseller.

IMPORTANT:
This meetup starts 30 minutes later than our regular meeting time to give Dan time to drive to Mississauga from Scarborough.
You are welcome to come at 7 or 7:30, but don't expect the talk to begin before 8 pm. It will definitely be worth it.
"


Monday, March 12, 2018

Is evolutionary psychology a deeply flawed enterprise?

We were discussing the field of evolutionary psychology at our local cafe scientific meeting last week. The discussion was prompted by watching a video of Steven Pinker in conversation with Stephen Fry. I pointed out that the field of evolutionary psychology is a mess and many scientists and philosophers think it is fundamentally flawed. The purpose of this post is to provide links to back up my claim.

Monday, February 12, 2018

Scientists fight back against fake news and pseudoscience

You probably know that climate change is real and humans are a major cause of global warming. You probably know that life has evolved and the Biblical story of creation is false. Scientists have been actively promoting these ideas for decades and they've been relatively successful in most countries. What you may not know is that these are just two of the many controversial claims that scientists are fighting. You may even have been tricked into believing some of the other pseudoscientific claims that are out there.

Friday, February 09, 2018

Junior scientist snowflakes

A recent letter in Nature draws attention to a serious (?) problem in modern society; namely, the persecution of junior scientists by older scientists who ask them tough questions. Anand Kumar Sharma warns us: "Don’t belittle junior researchers in meetings". Here's what he says, ...

The most interesting part of a scientific seminar, colloquium or conference for me is the question and answer session. However, I find it upsetting to witness the unnecessarily hard time that is increasingly given to junior presenters at such meetings. As inquisitive scientists, we do not have the right to undermine or denigrate the efforts of fellow researchers — even when their reply is unconvincing.

It is our responsibility to nurture upcoming researchers. Firing at a speaker from the front row is unlikely to enhance discussions. In my experience, it is more productive to offer positive queries and suggestions, and save negative feedback for more-private settings.

Thursday, July 06, 2017

Scientists say "sloppy science" more serious than fraud

An article on Nature: INDEX reports on a recent survey of scientists: Cutting corners a bigger problem than research fraud. The subtitle says it all: Scientists are more concerned about the impact of sloppy science than outright scientific fraud.

The survey was published on BioMed Central.