More Recent Comments

Wednesday, October 07, 2020

Undergraduate education in biology: no vision, no change

I was looking at the Vision and Change document the other day and it made me realize that very little has changed in undergraduate education. I really shouldn't be surprised since I reached the same conclusion in 2015—six years after the recommendations were published [Vision and Change] [Why can't we teach properly?].

The main recommendations of Vision and Change are that undergraduate education should adopt the proven methods of student-centered education and should focus on core concepts rather than memorization of facts. Although there has been some progress, it's safe to say that neither of these goals have been achieved in the vast majority of biology classes, including biochemistry and molecular biology classes.

Things are getting even worse in this time of COVID-19 because more and more classes are being taught online and there seems to be general agreement that this is okay. It is not okay. Online didactic lectures go against everything in the Vision and Change document. It may be possible to develop online courses that practice student-centered, concept teaching that emphasizes critical thinking but I've seen very few attempts.

Here are a couple of quotations from Vision and Change that should stimulate your thinking.

Traditionally, introductory biology [and biochemistry] courses have been offered as three lectures a week, with, perhaps, an accompanying two- or three-hour laboratory. This approach relies on lectures and a textbook to convey knowledge to the student and then tests the student's acquisition of that knowledge with midterm and final exams. Although many traditional biology courses include laboratories to provide students with hands-on experiences, too often these "experiences" are not much more than guided exercises in which finding the right answer is stressed while providing students with explicit instructions telling them what to do and when to do it.
"Appreciating the scientific process can be even more important than knowing scientific facts. People often encounter claims that something is scientifically known. If they understand how science generates and assesses evidence bearing on these claims, they possess analytical methods and critical thinking skills that are relevant to a wide variety of facts and concepts and can be used in a wide variety of contexts.”

National Science Foundation, Science and Technology Indicators, 2008

If you are a student and this sounds like your courses, then you should demand better. If you are an instructor and this sounds like one of your courses then you should be ashamed; get some vision and change [The Student-Centered Classroom].

Although the definition of student-centered learning may vary from professor to professor, faculty generally agree that student-centered classrooms tend to be interactive, inquiry-driven, cooperative, collaborative, and relevant. Three critical components are consistent throughout the literature, providing guidelines that faculty can apply when developing a course. Student-centered courses and curricula take into account student knowledge and experience at the start of a course and articulate clear learning outcomes in shaping instructional design. Then they provide opportunities for students to examine and discuss their understanding of the concepts presented, offering frequent and varied feedback as part of the learing process. As a result, student-centered science classrooms and assignments typically involve high levels of student-student and student-faculty interaction; connect the course subject matter to topics students find relevant; minimize didactic presentations; reflect diverse views of scientific inquiry, including data presentation, argumentation, and peer review; provide ongoing feedback to both the student and professor about the student's learning progress; and explicitly address learning how to learn.

This is a critical time for science education since science is under attack all over the world. We need to make sure that university students are prepared to deal with scientific claims and counter-claims for the rest of their lives after they leave university. This means that they have to be skilled at critical thinking and that's a skill that can only be taught in a student-centered classroom where students can practice argumentation and learn the importance of evidence. Memorizing the enzymes of the Krebs Cycle will not help them understand climate change or why they should wear a mask in the middle of a pandemic.

Saturday, October 03, 2020

On the importance of random genetic drift in modern evolutionary theory

The latest issue of New Scientist has a number of articles on evolution. All of them are focused on extending and improving the current theory of evolution, which is described as Darwin's version of natural selection [New Scientist doesn't understand modern evolutionary theory].

Most of the criticisms come from a group who want to extend the evolutionary synthesis (EES proponents). Their main goal is to advertise mechanisms that are presumed to enhance adaptation but that weren't explicitly included in the Modern Synthesis that was put together in the late 1940s.

One of the articles addresses random genetic drift [see Survival of the ... luckiest]. The emphasis in this short article is on the effects of drift in small populations and it gives examples of reduced genetic diversity in small populations.