More Recent Comments

Tuesday, October 31, 2017

The history of DNA sequencing

This year marks the 40th anniversary of DNA sequencing technology (Gilbert and Maxam, 1977; Sanger et al., 1977)1 The Sanger technique soon took over and by the 1990s it was the only technique used to sequence DNA. The development of reliable sequencing machines meant the end of those large polyacrylamide gels that we all hated.

Pyrosequencing was developed in the mid 1990's and by the year 2000 massive parallel sequencing using this technique was becoming quite common. This "NextGen" sequencing technique was behind the massive explosion in sequences in the early part of the 21st century.2

Even newer techniques are available today and there's a debate about whether they should be called Third Generation Sequencing (Heather and Chain, 2015).

Nature has published a nice review of the history of DNA sequencing (Shendure et al., 2017). I recommend it to anyone who's interested in the subject. The figure above is taken from that article.


1. Many labs were using the technology in 1976 before the papers were published.

2. New software and enhanced computer power played an important, and underappreciated, role.

Heather, J.M., and Chain, B. (2015) The sequence of sequencers: The history of sequencing DNA. Genomics, 107:1-8. [doi: 10.1016/j.ygeno.2015.11.003]

Maxam, A.M., and Gilbert, W. (1980) Sequencing end-labeled DNA with base-specific chemical cleavages. Methods in enzymology, 65:499-560. [doi: 10.1016/S0076-6879(80)65059-9]

Sanger, F., Nicklen, S., and Coulson, A.R. (1977) DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, 74:5463-5467. [PDF]

Shendure, J., Balasubramanian, S., Church, G.M., Gilbert, W., Rogers, J., Schloss, J.A., and Waterston, R.H. (2017) DNA sequencing at 40: past, present and future. Nature, 550:345-353. [doi: 10.1038/nature24286]


Escape from X chromosome inactivation

Mammals have two sex chromosomes: X and Y. Males have one X chromosome and one Y chromosome and females have two X chromosomes. Since females have two copies of each X chromosome gene, you might expect them to make twice as much gene product as males of the same species. In fact, males and females often make about the same amount of gene product because one of the female X chromosomes is inactivated by a mechanism that causes extensive chromatin condensation.

The mechanism is known as X chromosome inactivation. The phenomenon was originally discovered by Mary Lyon (1925-2014) [see Calico Cats].

Saturday, October 28, 2017

Creationists questioning pseudogenes: the GULO pseudogene

This is the second post discussing creationist1 papers on pseudogenes. The first post addressed a paper by Jeffrey Tomkins on the β-globin pseudogene [Creationists questioning pseudogenes: the beta-globin pseudogene]. This post covers another paper by Tomkins claiming that the GULO pseudogenes in various primate species are not derived from a common ancestor but instead have been deactivated independently in each lineage.

The Tomkins' article was published in 2014 in Answers Research Journal, a publication that describes itself like this:
ARJ is a professional, peer-reviewed technical journal for the publication of interdisciplinary scientific and other relevant research from the perspective of the recent Creation and the global Flood within a biblical framework.

Saturday, October 14, 2017

Creationists questioning pseudogenes: the beta-globin pseudogene

Jonathan Kane recently (Oct. 6, 2017) posted an article on The Panda's Thumb where he claimed that Young Earth Creationists often don't get enough credit for raising serious issues about evolution [Five principles for arguing against creationism].

He mentioned some articles about pseudogenes as prime examples. I asked him for references and he responded with two articles by Jeffrey Tomkins that were published on the Answers in Genesis website. The first was on the β-globin pseudogene and the second was on the GULO pseudogene. Both articles claim that these DNA sequences aren't really pseudogenes because they have functions.

I'll deal with the β-globin pseudogene in this post and the GULO pseudogene in a subsequent post.

Wednesday, October 11, 2017

Historical evolution is determined by chance events

Modern evolutionary theory is based on the idea that alleles become fixed in a population over time. They can be fixed by natural selection if they confer selective advantage or they can be fixed by random genetic drift if they are nearly neutral or slightly deleterious [Learning about modern evolutionary theory: the drift-barrier hypothesis]. Alleles arise by mutation and the path that a population follows over time depends on the timing of mutations [Mutation-Driven Evolution]. That's largely a chance event.

Wednesday, September 13, 2017

Sequencing human diploid genomes

Most eukaryotes are diploid, including humans. They have two copies of each autosome. Thousands of human genomes have been sequenced but in almost all cases the resulting genome sequence is a mixture of sequences from homologous chromosomes. If a site is heterogeneous—different alleles on each chromosome—then these are entered as variants.

Monday, September 11, 2017

What's in Your Genome?: Chapter 4: Pervasive Transcription (revised)

I'm working (slowly) on a book called What's in Your Genome?: 90% of your genome is junk! The first chapter is an introduction to genomes and DNA [What's in Your Genome? Chapter 1: Introducing Genomes ]. Chapter 2 is an overview of the human genome. It's a summary of known functional sequences and known junk DNA [What's in Your Genome? Chapter 2: The Big Picture]. Chapter 3 defines "genes" and describes protein-coding genes and alternative splicing [What's in Your Genome? Chapter 3: What Is a Gene?].

Chapter 4 is all about pervasive transcription and genes for functional noncoding RNAs. I've finally got a respectable draft of this chapter. This is an updated summary—the first version is at: What's in Your Genome? Chapter 4: Pervasive Transcription.

Saturday, September 09, 2017

Cold Spring Harbor tells us about the "dark matter" of the genome (Part I)


This is a podcast from Cold Spring Harbor [Dark Matter of the Genome, Pt. 1 (Base Pairs Episode 8)]. The authors try to convince us that most of the genome is mysterious "dark matter," not junk. The main theme is that the genome contains transposons that could play an important role in evolution and disease.

Wednesday, August 30, 2017

Experts meet to discuss non-coding RNAs - fail to answer the important question

The human genome is pervasively transcribed. More than 80% of the genome is complementary to transcripts that have been detected in some tissue or cell type. The important question is whether most of these transcripts have a biological function. How many genes are there that produce functional non-coding RNA?

There's a reason why this question is important. It's because we have every reason to believe that spurious transcription is common in large genomes like ours. Spurious, or accidental, transcription occurs when the transcription initiation complex binds nonspecifically to sites in the genome that are not real promoters. Spurious transcription also occurs when the initiation complex (RNA plymerase plus factors) fires in the wrong direction from real promoters. Binding and inappropriate transcription are aided by the binding of transcription factors to nonpromoter regions of the genome—a well-known feature of all DNA binding proteins [see Are most transcription factor binding sites functional?].

Sunday, August 27, 2017

The Extended Evolutionary Synthesis - papers from the Royal Society meeting

I went to London last November to attend the Royal Society meeting on New trends in evolutionary biology: biological, philosophical and social science perspectives [New Trends in Evolutionary Biology: The Program].

The meeting was a huge disappointment [Kevin Laland's new view of evolution]. It was dominated by talks that were so abstract and obtuse that it was difficult to mount any serious discussion. The one thing that was crystal clear is that almost all of the speakers had an old-fashioned view of the current status of evolutionary theory. Thus, they were for the most part arguing against a strawman version of evolutionary theory.

The Royal Society has now published the papers that were presented at the meeting [Theme issue ‘New trends in evolutionary biology: biological, philosophical and social science perspectives’ organized by Denis Noble, Nancy Cartwright, Patrick Bateson, John Dupré and Kevin Laland]. I'll list the Table of Contents below.

Most of these papers are locked behind a paywall and that's a good thing because you won't be tempted to read them. The overall quality is atrocious—the Royal Society should be embarrassed to publish them.1 The only good thing about the meeting was that I got to meet a few friends and acquaintances who were supporters of evolution. There was also a sizable contingent of Intelligent Design Creationists at the meeting and I enjoyed talking to them as well2 [see Intelligent Design Creationists reveal their top story of 2016].

Friday, August 25, 2017

Niles Eldredge explains punctuated equilibria

Lots of people misunderstand punctuated equilibria. It's a theory about small changes leading to speciation. In many cases the changes are so slight that you and I might not notice the difference. These are not leaps or saltations and there are no intermediates or missing links. The changes may be due to changes in the frequency of one or two alleles.

Punctuated equilibria are when these speciation events take place relatively quickly and are followed by much longer periods of stasis (no change). Niles Eldredge explains how the theory is derived from his studies of thousands of trilobite fossils.



Niles Eldredge explains hierarchy theory

You may not agree but you should at least know what some evolutionary biologists are thinking.



How much of the human genome is devoted to regulation?

All available evidence suggests that about 90% of our genome is junk DNA. Many scientists are reluctant to accept this evidence—some of them are even unaware of the evidence [Five Things You Should Know if You Want to Participate in the Junk DNA Debate]. Many opponents of junk DNA suffer from what I call The Deflated Ego Problem. They are reluctant to concede that humans have about the same number of genes as all other mammals and only a few more than insects.

One of the common rationalizations is to speculate that while humans may have "only" 25,000 genes they are regulated and controlled in a much more sophisticated manner than the genes in other species. It's this extra level of control that makes humans special. Such speculations have been around for almost fifty years but they have gained in popularity since publication of the human genome sequence.

In some cases, the extra level of regulation is thought to be due to abundant regulatory RNAs. This means there must be tens of thousand of extra genes expressing these regulatory RNAs. John Mattick is the most vocal proponent of this idea and he won an award from the Human Genome Organization for "proving" that his speculation is correct! [John Mattick Wins Chen Award for Distinguished Academic Achievement in Human Genetic and Genomic Research]. Knowledgeable scientists know that Mattick is probably wrong. They believe that most of those transcripts are junk RNAs produced by accidental transcription at very low levels from non-conserved sequences.

Monday, August 07, 2017

A philosopher defends agnosticism

Paul Draper is a philosopher at Purdue University (West Lafayette, Indiana, USA). He has just (Aug. 2, 2017) posted an article on Atheism and Agnosticism on the Stanford Encyclopedia of Philosophy website.

Many philosphers use a different definition of atheism than many atheists. Philosophers tend to define atheism as the proposition that god(s) do not exist. Many atheists (I am one) define atheism as the lack of belief in god(s). The distinction is important but for now I want to discuss Draper's defense of agnosticism.

Keep in mind that Draper defines atheism as "god(s) don't exist." He argues, convincingly, that this proposition cannot be proven. He also argues that theism—the proposition that god(s) exist—can also not be proven. Therefore, the only defensible position for a philosopher like him is agnosticism.