Total eclipse of the sun, in the Altai region of Siberia on Friday, August 1, 2008.
[Photo Credit: SciAm.com]
[Photo Credit: SciAm.com]
Daddy was a cop
On the East Side of Chicago
Back in the USA
Back in the bad old days
In the heat of a summer night
In the land of the dollar bill
When the town of Chicago died
And they talk about it still
When a man named Al Capone
Tried to make that town his own
And he called his gang to war
Against the forces of the law
I heard my momma cry
I heard her pray the night Chicago died
Brother, what a night it really was
Brother, what a fight it really was
Glory be
I heard my momma cry
I heard her pray the night Chicago died
Brother, what a night the people saw
Brother, what a fight the people saw
Yes, indeed
And the sound of the battle rang
Through the streets of the old East Side
'Til the last of the hoodlum gang
Had surrendered up or died
There was shouting in the street
And the sound of running feet
And I asked someone who said
'Bout a hundred cops are dead
I heard my momma cry
I heard her pray the night Chicago died
Brother, what a night it really was
Brother, what a fight it really was
Glory be
I heard my momma cry
I heard her pray the night Chicago died
Brother, what a night the people saw
Brother, what a fight the people saw
Yes, indeed
Then there was no sound at all
But the clock up on the wall
Then the door burst open wide
And my daddy stepped inside
And he kissed my momma's face
Then brushed her tears away
I heard my momma cry
I heard her pray the night Chicago died
Brother, what a night it really was
Brother, what a fight it really was
Glory be
I heard my momma cry
I heard her pray the night Chicago died
Brother, what a night the people saw
Brother, what a fight the people saw
Yes, indeed
The night Chicago died
The night Chicago died
Brother, what a night it really was
Brother, what a fight it really was
Glory be
The night Chicago died
The night Chicago died
1. There never was such a night in Chicago. Most of the killing took place when rival gangs fought it out, not between police and gang members. The British songwriters had never been to Chicago and knew very little of the history. It's one of those stories that you would like to be true but sometimes real history sucks.
2. It is often thought to be a backhanded reference to the Chicago riots of 1968 but there's no evidence to support that theory and by 1974 the memory had faded.
The standard neo-Darwinian view of the evolution of diversity is that a species splits into two when two populations become sufficiently unalike that they can no longer interbreed. Often the populations begin diverging when they chance to be geographically separated. The separation means that they no longer mix their genes sexually and this permits them to evolve in different directions. The divergent evolution might be driven by natural selection (which is likely to push in different direction because of different conditions in the two geographical areas). Or it might consist of random evolutionary drift (since the two populations are not genetically held together by sexual mixing, there is nothing to stop them drifting apart). In either case, when they have evolved sufficiently far apart that they no longer interbreed even if they were geographically united again, they are defined as belonging to separate species.Either, or both, of the two main mechanisms of evolution—natural selection and random genetic drift—can lead to speciation and diversity.
Darwin's Theory of Evolution by Natural Selection is the only scientific explanation for the spectacular diversity of life on Earth.So, here's the question of the day. Do you agree with that statement? Do you agree that natural selection is the only scientific explanation of diversity? Spencer Barrett seems to agree. Richard Dawkins would not agree. What do you think?1
1. If you disagree with the statement then please try and explain why it is featured so prominently in the Darwin exhibit. Is this an example of framing, or ignorance?
[Hat Tip: GrrlScientist, My Body Makes a Really Crappy Human Shield]
[Photo Credit: AP Photo]
"for his discoveries concerning genetic recombination and the organization of the genetic material of bacteria"
Dr. Lederberg’s discovery that bacteria engage in sex created new understandings of how bacteria evolve and acquire new traits, including resistance to antibiotic drugs. A founder of the field of molecular biology, he helped lay the foundations for many biological revolutions, including biotechnology.Lederberg shared the 1958 prize with George Beadle and Edward Tatum [Nobel Laureates: George Beadle and Edward Tatum].
Dr. Lederberg moved in diverse worlds. A brilliant analyst and visionary, he led early inquiries into the possibility of computer intelligence, theorized about alien life in distant galaxies and advised American presidents for a half century. He also wrote a weekly newspaper column, “Science and Man.” His ideas were often decades ahead of the conventional wisdom.
Your Majesties, Your Royal Highnesses, Ladies and Gentlemen.
One of the most striking features in the development of science during the past two decades is the rapid advance in the diverse fields of biology. Here the tempo of progress continues to quicken. The research contains a vast and complex material whose major portion remains the business of specialists. The observations they make in the laboratories of basic research are apparently distant from the needs of the everyday world. But again and again we discover how short the step is from these basic findings to advances in medical therapy or diagnosis that are of importance to all of us in our daily lives.
For an example we need turn only to the previous Nobel Prize in Genetics, awarded to H.J. Muller for his discovery that X-ray irradiation can change the genetic material in living organisms. The discovery was made, and the detailed analysis carried out, in a type of small fruit fly, and at the time that the prize was awarded, perhaps gave the impression that its greatest interest was in its contribution to basic principles. Now, with the era of atomic energy upon us, we all know that the genetic risks from the high-energy radiation threatening man, belong to the things I just mentioned, of vital and immediate importance to us all.
Experimental genetics is a branch of modern biology in which progress has been especially rapid. The methods and points of view of this and its allied disciplines are indispensable for many fields of medicine today. This rapidly increasing importance of experimental genetics and cell research is easily understood. The research is now reaching towards the very elements of heredity, the structures within each cell that control its life and its behavior, and thus ultimately determine the development of the whole organism. Now we begin to see what the fundamental biological processes may be. That discoveries in this field have consequences in many others is surely no surprise to any of us.
The work of all three winners of the prize lies on this plane. Their studies are concerned with the very basis of heredity and the manner in which the genes function. That hereditary characters are transmitted from parents to offspring via special elements in the ovum and spermatozoon, the so-called genes, has long been known. The organism that develops from the fertilized ovum receives certain of the parents' characters through these genes, and the genetic material in the fertilized egg, that is to say, all these genes combined, determines the development of the organism.
The cells that together constitute an organism as a rule contain a complete set of genes characteristic of the species. In ordinary cell division these are divided and subsequently distributed equally between the two daughter cells. At fertilization, the different genetic materials from two individuals unite in the fusion of the egg and the sperm. The result of the sexual reproduction is to provide offspring with genes from both of their parents. In this way, individuals with differing combinations of characters originate. And just herein lies the biologic value of the sexual process, which can be traced throughout practically the entire animal and plant kingdoms. Without the renewal such a constant recombination of characters involves, an animal or plant species would not be able to survive the struggle for existence.
The characters, which are transmitted by the genes from generation to generation, present a picture of bewildering multiplicity. This very multiplicity of the genes' effects made it difficult to attack experimentally the problem of their structure and manner of functioning; it was impossible to trace straightforward lines that could serve as a background for an experimental study.
The situation was radically changed by Beadle and Tatum, who, through a daring and astute selection of experimental material, created a possibility for a chemical attack upon the field. Circumstantial evidence pointed to a similarity of the genetic mechanisms throughout the entire plant and animal kingdoms. Beadle and Tatum selected as object for their investigations an organism with very simple structure, a bread mold, Neurospora crassa, which is far easier to work with, in many respects, than the objects usually studied in genetics. It is able to synthesize its body substances from a very simple culture medium: sugar, salts, and a growth factor. When cultures of the mold are exposed to X-ray irradiation, mutations - that is, changes in individual genes - result as they do in other organisms. By producing a large number of such mutations and by means of an analysis of the material, which should serve as a model for analytic research, Beadle and Tatum succeeded in demonstrating that the body substances are synthesized in the individual cell step by step in long chains of chemical reactions, and that genes control these processes by individually regulating definite steps in the synthesis chain. This regulation takes place through formation by the gene of special enzymes. If a gene is damaged, for example through irradiation-induced mutation, the chain is broken, the cell becomes defective - and may possibly be unable to survive. Even in the formation of comparatively simple substances the steps in the synthetic chain are many, and consequently the number of collaborating genes large. This explains simply why gene function appeared to be so impossibly complex. The discovery provides our best means of penetrating into the manner in which the genes work and has now become one of the foundations of modern genetics. Its importance extends over other fields as well, however.
Especially valuable is the possibility it affords for detailed study of the processes of chemical synthesis in the living organism. In Neurospora material it is easy by means of X-ray irradiation to produce quickly a large number of strains in which the function of different individual genes has been disturbed. By comparing these strains we are able to determine in detail how the different stages of synthesis succeed one another when the cell's substances are formed. Beadle and Tatum's technique has become one of our most important tools for the study of cell metabolism and has already yielded results of significance to various problems in the fields of medicine and general biology.
The successful results with Neurospora also provided an incentive to continued efforts to probe the basic processes further with the aid of even simpler organisms. The bacteria are even more primitive than Neurospora. The bacterial genetic mechanism was little known; many even doubted that they had one comparable with that of the higher forms of life. Tatum extended the approaches worked out in Neurospora to the bacteria. When Lederberg came to Tatum's laboratory as a young student, they discovered that different bacterial strains could be crossed to produce an offspring containing a new combination of genetic factors. This is the counterpart of the normal sexual fertilization in higher organism; it is usually considered preferable here, however, to speak of «genetic recombination». Bacterial genetics has been developed, primarily through the efforts of Lederberg and his coworkers, into an extensive research field in recent years. He also contributed further evidence that the genetic mechanism of the bacteria corresponds to that of the higher organisms. Moreover, thanks to their simple structure and extraordinarily rapid growth, bacteria provided new and excellent possibilities for a more profound study of the genetic mechanisms. Lederberg has made many contributions in this field. Particularly important is his discovery that sexual fertilization is not the only process leading to recombination of characters in bacteria. Bits of genetic material can, if they are introduced into the bacterial body, become part of the genetic material of the bacterial cell and thus change its constitution. This is usually termed «transduction», and it is the first example demonstrating that it is possible experimentally to manipulate an organism's genetic material and to introduce new genes into it and, the organism new characters. Studies in this are now being carried out in many laboratories in different parts of the world.
The transduction process and certain other related phenomena have greatly improved our means of penetrating experimentally into the basic processes of cell function and cell growth. In all probability they will also prove to have great significance in the study of the function of the higher organisms under normal and pathologic conditions. Work in this field, carried out in laboratories throughout the world, has already greatly expanded our knowledge of the basic processes in bacteriophage infection and of the mechanism of virus infection. The observations also have opened the way to a more profound understanding of certain growth problems. Certainly cancer research will be increasingly influenced by the evolution of our knowledge of the organization of the genetic material and its manner of functioning, that has been made possible by the discoveries of this year's three winners of the Nobel Prize in Physiology or Medicine.
Doctor Beadle and Doctor Tatum. In consequence of an exemplary collaboration in which each has complemented the other to unusual advantage, it has been given to you to make discoveries of fundamental importance to our understanding of the mechanism of Life's processes.
Doctor Lederberg. At first in collaboration with your co-winners of this year's Nobel Prize, and subsequently, along ever-broadening independent lines, you have made possible the advance of research to the structure of the actual genetic material.
Gentlemen. In recognition of your outstanding contributions to science the Karolinska Institute has awarded you this year's Nobel Prize in Physiology or Medicine. On behalf of the Institute I wish to extend the warmest congratulations from your colleagues on your brilliant achievements.
It is my honoured privilege now to invite you to receive your awards from the hands of His Majesty the King.
Equally interesting to me as a scientist and framer of scientific messages, is how the writer talked about the academic work she reported on. She talks about academic conclusions from a multi-year study "couched in academic understatement." My guess is the social scientists here were doing the usual, scientifically correct thing and describing their data and conclusions within the statistically appropriate confidence intervals. Probably something along the lines of: "our results appear to apply, statistically to the American population within a 95% probability. Alternately, bootstrapped ANCOVA without regression might have yielded..." That may be correct in a talk to the National Academy of Public Administration, but somehow it always leads newspaper reporters.... to wonder what the academics area really saying, and try to get "other sides" of the story. In other words - this is bad framing for an general audience. Thankfully, in this particular case, the "fairness in reporting" stchick works - and it contributes to the reporting. In the case of Creationism/Intelligent Design vs. Evolution, it doesn't.This is a very important point, one that the "framers" have never made explicitly. The scientific reporting of information may be okay for scientists but when you're talking to non-scientists you've got to be non-scientific. The "scientifically correct" approach just won't do for the hoi-polloi.
I know, I know, scientists hate to make firm conclusions when the data do contain the possibility of error or omission. They even hate to make black and white statements when there is a really LOW probability of error. I took those courses too.I'm so glad he took the courses. Now he knows how scientists are supposed to behave.
But this is a public policy debate. It is about how to get American voters more engaged, or if they can be more engaged. And if the truth is Americans are one or two issue voters who inherit their political allegiances like a house or a trust fund, those facts tells us something. And no one will fault the scientists for saying so directly, and with out describing the confidence interval.It's not true that "no one will fault the scientists." I will fault the scientists for lying or distorting the scientific truth by omitting the qualifications. And I'm not alone. Many other scientists think the same way and that's why scientists are not jumping on the
[Photo Credit: Blick Art Materials]
HALF a century before Charles Darwin published On the Origin of Species, the French naturalist Jean-Baptiste Lamarck outlined his own theory of evolution. A cornerstone of this was the idea that characteristics acquired during an individual's lifetime can be passed on to their offspring. In its day, Lamarck's theory was generally ignored or lampooned. Then came Darwin, and Gregor Mendel's discovery of genetics. In recent years, ideas along the lines of Richard Dawkins's concept of the "selfish gene" have come to dominate discussions about heritability, and with the exception of a brief surge of interest in the late 19th and early 20th centuries, "Lamarckism" has long been consigned to the theory junkyard.Ugh.
Now all that is changing. No one is arguing that Lamarck got everything right, but over the past decade it has become increasingly clear that environmental factors, such as diet or stress, can have biological consequences that are transmitted to offspring without a single change to gene sequences taking place. In fact, some biologists are already starting to consider this process as routine. However, fully accepting the idea, provocatively dubbed the "new Lamarckism", would mean a radical rewrite of modern evolutionary theory. Not surprisingly, there are some who see that as heresy. "It means the demise of the selfish-gene theory," says Eva Jablonka at Tel Aviv University, Israel. "The whole discourse about heredity and evolution will change" (see "Rewriting Darwin and Dawkins?").
Epigenetics deals with how gene activity is regulated within a cell - which genes are switched on or off, which are dimmed and how, and when all this happens. For instance, while the cells in the liver and skin of an individual contain exactly the same DNA, their specific epigenetic settings mean the tissues look very different and do a totally different job. Likewise, different genes may be expressed in the same tissue at different stages of development and throughout life. Researchers are a long way from knowing exactly what mechanisms control all this, but they have made some headway.Some headway? That's quite an understatement isn't it? Emma Young then goes on to describe some of that mysterious headway. Turns out that methylation of DNA, histone modification, and RNAi are the prime suspects in the upcoming paradigm shift. Who woulda guessed?
For Bonduriansky the accumulating evidence calls for a radical rethink of how evolution works. Jablonka, too, believes that "Lamarckian" mechanisms should now be integrated into evolutionary theory, which should focus on mechanisms, rather than units, of inheritance. "This would be very significant," she says. "It would reintroduce development, in a very direct and strong sense, into heredity and hence evolution. It would mean the pre-synthesis view of evolution, which was very diverse and very rich, can return, but with molecular mechanisms attached."That's a relief. All epigenetic phenomena are unstable and/or reversible and Dawkins isn't buying any of this pseudoscientific nonsense about its effect on evolution. Now if we could only convince the science writers to pay more attention to the skeptics and less attention to the self-serving "revolutionaries."
That needn't necessarily mean an end to the idea of the gene as the basic unit of inheritance, or Richard Dawkins's selfish gene, according to some. "I don't think it violates the basic concept that Dawkins articulated," says Eric Richards, at Washington University in St Louis, Missouri. "Epigenetic marks can also be viewed as part of that basic unit in a more inclusive definition of a gene," he says.
What does Dawkins himself think? "The 'transgenerational' effects now being described are mildly interesting, but they cast no doubt whatsoever on the theory of the selfish gene," he says. He suggests, though, that the word "gene" should be replaced with "replicator". This selfish replicator, acting as the unit of selection, does not have to be a gene, but it does have to be replicated accurately, the occasional mutation aside. "Whether [epigenetic marks] will eventually be deemed to qualify as 'selfish replicators' will depend upon whether they are genuinely high-fidelity replicators with the capacity to go on for ever. This is important because otherwise there will be no interesting differences between those that are successful in natural selection and those that are not." If all the effects fade out within the first few generations, they cannot be said to be positively selected, Dawkins points out.
So how accurately transmitted should an epigenetic mark be? Variation due to faulty copying is compounded by current evidence that all histone modifications, as well as DNA methylation itself, can be abruptly removed during development, thereby preventing the persistence of these modifications in a heritable epigenetic sense.In other words, an epigenetic phenomenon doesn't really need to be heritable in order to qualify as epigenetic.
The restrictiveness of the heritable view of epigenetics is perhaps best illustrated by considering the brain. A growing idea is that functional states of neurons, which can be stable for many years, involve epigenetic phenomena, but these states will not be transmitted to daughter cells because almost all neurons never divide.That's not very helpful. It's beginning to look like any activation or repression of eukaryotic genes will count as epigenetics. (According to some, it doesn't have to be eukaryotes. There is epigenetic regulation in bacteria as well, Casadesús and Low (2006).)
Given that there are several existing definitions of epigenetics, it might be felt that another is the last thing we need. Conversely, there might be a place for a view of epigenetics that keeps the sense of the prevailing usages but avoids the constraints imposed by stringently requiring heritability. The following could be a unifying definition of epigenetic events: the structural adaptation of chromosomal regions so as to register, signal or perpetuate altered activity states.Does this include simple activation and repression of genes during development in the manner of control of lac operon expression? You betcha.
For example, transcriptional activation through sequence-specific DNA-binding proteins brings in histone acetyltransferases, which then epigenetically adapt the promoter region for transcription (for histone acetyl groups, although ephemeral, would now be epigenetic).So we're right back where we started, Craig will not be happy. Just about anything that modifies or regulates gene expression in eukaryotes (multicellular?) counts as epigenetics.
Bird, A. (2007) Perceptions of epigenetics. Nature 447:396-398. [doi:10.1038/nature05913]
Casadesús, J. and Low, D. (2006) Epigenetic Gene Regulation in the Bacterial World. Microbiology and Molecular Biology Reviews 70:830-856. [doi:10.1128/MMBR.00016-06
[Photo Credit: Researchers Trade Insights About Gene Swapping by Elizabeth Pennasi Science 305:334 - 335. DOI: 10.1126/science.305.5682.334]