More Recent Comments

Showing posts sorted by relevance for query Shapiro. Sort by date Show all posts
Showing posts sorted by relevance for query Shapiro. Sort by date Show all posts

Tuesday, September 12, 2023

How the Krebs cycle disproves Darwinism (not!)

You know you're in for a treat when papers published in a (previously) reputable journal make frequent references to Dennis Noble and James Shapiro.

The purpose of this post is to demonstrate that you shouldn't let creationist amateurs publish anti-evolution rants in scientific journals.


I want to discuss two papers that were recently published in the journal Progress in Biophysics and Molecular Biology. This used to be a very reputable journal but its reputation suffered a big blow in 2018 when it published a paper on panspermia. The current editor-in-chief at the time, Denis Noble, defended that article on the grounds that the origin of life is an unsolved problem and all points of view deserve to be covered in a scientific journal. Denis Noble is still on the editorial board along with Tom L. Blundell and Delphine Dean (see editorial board) and they now have to answer for publishing two creationist papers by Olen R. Brown and David A. Hullender.

Sunday, August 17, 2008

Evolution at Chautauqua

 
I'm at the Chautauqua Institution for a week on Darwin and Linnaeus: Their Impact on Our View of the Natural World.

It's going to be a busy week. From 9-10:30 every morning I'm teaching a course, and leading a discussion, on evolution for a group of 35 Elderhostel students. Then there's the morning lecture from 10:45-12. In the afternoon I teach a course called "What Is Evolution." This is followed by the afternoon lecture. From 3:30-5 I'm taking a course on "Evolution and Christianity."

Here's the line-up of speakers. I'll try and blog something every day on what they had to say but given the busy schedule I'm not making any promises.

Monday, August 18
10:45 Kenneth Miller, prof. of biology, Brown University; author, Finding Darwin's God

2:00 Rev. Bruce Sanguin (Evolution and Christianity)
Tuesday, August 19
10:45 Beth Shapiro, asst. prof. of biology, Penn State Univ.; researcher in field of ancient DNA

2:00 Carl Zimmer, science journalist, author, Evolution: The Triumph of an Idea
Wednesday, August 20
10:45 Edward Larson, prof. of law, Pepperdine Univ; Pulitzer Prize-winner for Summer for the Gods

2:00 Barbara J. King, prof. of anthropology, College of William & Mary; author, Evolving God
Thursday, August 21
10:45 Spencer Wells, population geneticist; director of Genographic Project

2:00 Eugenie C. Scott, executive director, National Center for Science Education
Friday, August 22
10:45 Mattias Klum, National Geographic Society photographer; documentary filmmaker, "The Linnaeus Expedition"

2:00 Michael Ruse, professor of philosophy, Florida State University; director of program in history and philosophy of science, Bristol Univ.


Sunday, August 27, 2017

The Extended Evolutionary Synthesis - papers from the Royal Society meeting

I went to London last November to attend the Royal Society meeting on New trends in evolutionary biology: biological, philosophical and social science perspectives [New Trends in Evolutionary Biology: The Program].

The meeting was a huge disappointment [Kevin Laland's new view of evolution]. It was dominated by talks that were so abstract and obtuse that it was difficult to mount any serious discussion. The one thing that was crystal clear is that almost all of the speakers had an old-fashioned view of the current status of evolutionary theory. Thus, they were for the most part arguing against a strawman version of evolutionary theory.

The Royal Society has now published the papers that were presented at the meeting [Theme issue ‘New trends in evolutionary biology: biological, philosophical and social science perspectives’ organized by Denis Noble, Nancy Cartwright, Patrick Bateson, John Dupré and Kevin Laland]. I'll list the Table of Contents below.

Most of these papers are locked behind a paywall and that's a good thing because you won't be tempted to read them. The overall quality is atrocious—the Royal Society should be embarrassed to publish them.1 The only good thing about the meeting was that I got to meet a few friends and acquaintances who were supporters of evolution. There was also a sizable contingent of Intelligent Design Creationists at the meeting and I enjoyed talking to them as well2 [see Intelligent Design Creationists reveal their top story of 2016].

Saturday, June 06, 2015

Who's an authority on evolutionary theory?

There's an interesting discussion going on at Uncommon Descent. Barry Arrington is wondering who to believe when it comes to evolutionary theory and many of the ID regulars have chimed in [Authority in evolutionary theory]. Clearly, this is an important issue for them because they don't want to be accused of not understanding evolution. They want to protect their version of Darwinism.

They seemed to have reached a consensus. They say you can't be an authority on evolutionary theory unless you have published a scientific paper on the subject in the last decade or so. What this means is that they can dismiss the views of many evolution supporters because we don't meet the minimum qualification.1 Our view on what is, and isn't, proper evolutionary theory are just personal opinions so they don't count.

Unfortunately for them, this also eliminates Barry Arrington, Vincent Torley, Denyse O'Leary, Casey Luskin, Stephen Meyer, Jonathan Wells, Jonathan McLatchie, Michael Behe, Salvador Cordova, Jonathan Bartlet, Michael Egnor, Cornelius Hunter, Gordon Elliot Mullings, Ann Gauger and just about everyone else in the Intelligent Design Creationist camp. If they stick to their guns, it means that nothing posted on the ID blogs is anything more than a personal opinion by someone who is not an authority on evolutionary theory.

So, who are they going to believe now? My first thought is that this can only be good for the evolution side since people who publish scientific articles on evolutionary theory are not ID supporters. It means that the Intelligent Design Creationists are obligated to trust many prominent evolution biologists as authorities while dismissing most of their own crowd.

I don't think that's what they have in mind. What they have in mind is that people like Jim Shapiro and other critics of modern evolutionary theory are the real authorities because they have published in the scientific literature. I suppose it's part of a strategy to maintain the illusion that "Darwinism" is deeply flawed.

The one good thing that will come out of this discussion, I'm sure, is that the number of posts and comments on their blogs will be greatly reduced since the general consensus is that none of them are authorities on the subject of evolution. Lot's of people are going to have to shut up because they haven't published anything on evolutionary theory.2

Strange, but I will miss Barry Arrington and Denyse O'Leary's attacks on evolutionary theory. They will now be criticized by their own people as non-authorities whenever they post.


1. I have never published a paper in the scientific literature on evolutionary theory.

2. No, I'm not holding my breath.

Saturday, May 04, 2013

Why Are "Darwinists" So Uncivil?

Let's ignore for a minute the people who comment on Sandwalk because it's clear that the most uncivil group is the creationists. Let's also ignore the people who comment on the creationist blogs because there it's also the supporters of religion who are the most uncivil. Oh hell, let's just ignore reality altogether and assume, for the sake of argument, that supporters of evolution are more uncivil than creationists.

Stephen A. Batzer speculates, very civilly, why this imaginary assumption might be true [Why Darwinism and Incivility Seem to Go Together].
  1. They're human. That says a lot that's negative about them and of course about us, too.
  2. They're typing, probably anonymously, on the Internet. I'm sure you have noticed the level of discourse on the Internet. The Lincoln-Douglas debates it isn't. On any topic.
  3. You are challenging their religious beliefs, which they know, just know, to be true.
  4. Thought leaders in the Darwinian movement, such as Dawkins, Prothero, Shermer and so on, inculcate and advocate incivility by their own example. Look at the way biologist James Shapiro and philosopher Jerry Fodor have been treated. It's ugly.
  5. "A little knowledge is a dangerous thing." That Darwinism is a FACT has been proclaimed since before all of us were born. Saying that the Darwinian mechanism of speciation is not a fact strikes many folks as if you're intimating that there is no Japan. It's just a made up country. When I try to measure the level of personal knowledge that Internet advocates have of evolutionary theory, it is almost universally superficial. This includes biologists.
  6. They have not taken the time to understand what the issues are or what evidence is convincing to those who disagree with them. They are ignorant in a nearly comprehensive way about why thoughtful, educated people find the "generate and filter" paradigm causally insufficient.
Isn't that amusing?

Now for the next bit ...

WARNING!!! Turn off your irony meter. It doesn't matter whether you have the updated Mark VIII with the extra power pack or not. Turn it off, NOW!!!

Here's how Stephen A. Batzer ends his post on Evolution News & Views (sic).

One thing that draws me to the ID movement is that it has the polite and understated ethic that science is supposed to have -- but does not have when the subject is evolution.



Friday, August 07, 2015

Here's why you can ignore Günther Witzany

Günther Witzany is one of those people who think the Modern Synthesis needs to be overthrown but he missed the real revolution that took place in the late 1960s. He's part of The Third Way crowd that includes Denis Noble and Jim Shapiro [see Physiologists fall for the Third Way and The Third Fourth Way].

Susan Mazur interviews him for the Huffington Post [Günther Witzany: Modern Synthesis "Must Be Replaced," Communication Key to Evolution]. Recall that Susan Mazur is fixated on the Altenburg 16 and their attempts to radically revise evolutionary theory without understanding anything about Neutral Theory and random genetic drift. Günther Witzany is a philosopher. He was not one of the Altenberg 16 but he clearly wants to be part of the outer circle. It's not clear why anyone should consider him an expert on evolutionary biology.

Susan Mazur did us a great favor when she asked him if he would like to make a final point. His answer shows us why we can ignore him.
The older concepts we have now for a half century cannot sufficiently explain the complex tendency of the genetic code. They can't explain the functions of mobile genetic elements and the endogenous retroviruses and non-coding RNAs. Also, the central dogma of molecular biology has been falsified -- that is, the way is always from DNA to RNA to proteins to anything else, or the other "dogmas," e.g., replication errors drive evolutionary genetic variation, that one gene codes for one protein and that non-coding DNA is junk. All these concepts that dominated science for half a century are falsified now. ...
Thank-you Susan. Keep up the good work. Fools need to be exposed.


Friday, April 18, 2008

Evolution at the Chautauqua Institution

 
The program for Week 9 (Aug. 17-23) at the Chautauqua Institution has been posted [Week Nine: Darwin and Linnaeus: Their Impact on Our View of the Natural World].

Here's the lineup of lectures in the main amphitheater (morning) and the Hall of Philosophy (afternoon).

Monday Aug. 18
10:45 am: Kenneth Miller, prof. of biology, Brown University; author, Finding Darwin's God.
Tuesday Aug. 19
10:45 am: Beth Shapiro, asst. prof. of biology, Penn State Univ.; researcher in field of ancient DNA.
2:00 pm: Carl Zimmer, science journalist, author, Evolution: The Triumph of an Idea.
Wednesday Aug. 20
10:45 am: Edward Larson, prof. of law, Pepperdine Univ; Pulitzer Prize-winner for Summer for the Gods.
2:00 pm: Barbara J. King, prof. of anthropology, College of William & Mary; author, Evolving God
Thursday, Aug. 21
10:45 am: Spencer Wells, population geneticist; director of Genographic Project.
2:00 pm: Eugenie C. Scott, executive director, National Center for Science Education.
Friday, Aug. 22
10:45 am: Mattias Klum, National Geographic Society photographer; documentary filmmaker, The Linnaeus Expedition.
2:00 pm: Michael Ruse, professor of philosophy, Florida State University; director of program in history and philosophy of science, Bristol Univ.

Throughout the week you can further improve your mind by taking special courses. You might be interested in course #1948 on What Is Evolution. I can guarantee you a good time in the course. We will finish at 2 pm on Tuesday, Thursday, and Friday.

For entertainment there's the Philadelphia Dance Company on Monday night, the very excellent Chautauqua Symphony on Tuesday night, a Vince Gill concert on Friday night, and an evening with Bill Cosby on Saturday night.

I'm also going to be there for week 4 on The Ethical Frontiers of Science.


Thursday, February 07, 2008

Theme: Genomes & Junk DNA

Junk in Your Genome

Transposable Elements: (44% junk)

      DNA transposons:
         active (functional): <0.1%
         defective (nonfunctional): 3%
      retrotransposons:
         active (functional): <0.1%
         defective transposons
            (full-length, nonfunctional): 8%
            L1 LINES (fragments, nonfunctional): 16%
            other LINES: 4%
            SINES (small pseudogene fragments): 13%
            co-opted transposons/fragments: <0.1% a
aCo-opted transposons and transposon fragments are those that have secondarily acquired a new function.
Viruses (9% junk)

      DNA viruses
         active (functional): <0.1%
         defective DNA viruses: ~1%
      RNA viruses
         active (functional): <0.1%
         defective (nonfunctional): 8%
         co-opted RNA viruses: <0.1% b
bCo-opted RNA viruses are defective integrated virus genomes that have secondarily acquired a new function.
Pseudogenes (1.2% junk)
      (from protein-encoding genes): 1.2% junk
      co-opted pseudogenes: <0.1% c
cCo-opted pseudogenes are formerly defective pseudogenes those that have secondarily acquired a new function.
Ribosomal RNA genes:
      essential 0.22%
      junk 0.19%

Other RNA encoding genes
      tRNA genes: <0.1% (essential)
      known small RNA genes: <0.1% (essential)
      putative regulatory RNAs: ~2% (essential) Protein-encoding genes: (9.6% junk)
      transcribed region:  
            essential 1.8%  
            intron junk (not included above) 9.6% d
dIntrons sequences account for about 30% of the genome. Most of these sequences qualify as junk but they are littered with defective transposable elements that are already included in the calculation of junk DNA.
Regulatory sequences:
      essential 0.6%

Origins of DNA replication
      <0.1% (essential) Scaffold attachment regions (SARS)
      <0.1% (essential) Highly Repetitive DNA (1% junk)
      α-satellite DNA (centromeres)
            essential 2.0%
            non-essential 1.0%%
      telomeres
            essential (less than 1000 kb, insignificant)

Intergenic DNA (not included above)
      conserved 2% (essential)
      non-conserved 26.3% (unknown but probably junk)

Total Essential/Functional (so far) = 8.7%
Total Junk (so far) = 65%
Unknown (probably mostly junk) = 26.3%
For references and further information click on the "Genomes & Junk DNA" link in the box

LAST UPDATE: May 10, 2011 (fixed totals, and ribosomal RNA calculations)





November 11, 2006
Sea Urchin Genome Sequenced

The sea urchin genome is 814,000 kb or about 1/4 the size of a typical mammalian genome. Like mammalian genomes, the sea urchin genome contains a lot of junk DNA, especially repetitive DNA. The preliminary count of the number of genes is 23,300. This is about the same number that we have in our genomes. Only about 10,000 of these genes have been annotated by the sea urchin sequencing team.

Thursday, September 13, 2012

Groupthink Science And That 'Junk DNA'

The IDiots (e.g. Tom Bethell) over at Evolution News & Views are gloating about a comment made on The Wall Street Journal website [Why ENCODE Is a Significant Defeat for Darwinism].

The WSJ article is: Groupthink Science And That 'Junk DNA'.
Anyone with even the slightest understanding of the evolutionary process knows that evolution is too relentlessly efficient to have allowed most, or even large sections, of DNA to be "junk" ("'Junk DNA' Theory Debunked," U.S. News, Sept. 6). Any intelligent scientist would have simply said, "I don't know."

Unfortunately, this says something important about the quality of contemporary Ph.Ds. Groupthink has become pervasive in part because of how research is now financed: grants. The disillusioning sociological aspects of scientific research that Thomas Kuhn identified more than four decades ago have become more pronounced, not less.

Tom Shillock

Portland, Ore.
This is exactly backwards, in my opinion. The real problem is that many scientists think, incorrectly, that natural selection would have removed all junk DNA so they are looking for reasons why it isn't junk. If they can't find evidence then they just make up a story or re-define the word "function." They don't have even the slightest understanding of evolution, just like Tom Shillock.

UPDATE: Shapiro and Sternberg Anticipated the Fall of Junk DNA.


Tuesday, October 18, 2011

Junk & Jonathan: Part 13—Chapter 10

This is part 13 of my review of The Myth of Junk DNA. For a list of other postings on this topic see the links in Genomes & Junk DNA in the "theme box" below or in the sidebar under "Themes."


The title of Chapter 10 is "From Junk DNA to a New Understanding of the Genome." It's a very misleading title since the bulk of the chapter is an attempt to refute the arguments of various evolutionary biologists.
In this chapter, we return to the arguments based on junk DNA that we encountered in Chapter 2. Richard Dawkins, Kenneth Miller, Michael Shermer, Francis Collins, Philip Kitcher, Jerry Coyne and John Avise all claimed that most of our DNA is nonfunctional junk, and that this provides evidence for Darwinian evolution and against intelligent design (ID).
Wells' statement is very misleading. He's confusing the argument about conserved pseudogenes with a claim that most of our genome is junk. Several of these authors have pointed out that the presence of similar pseudogenes at the same location in the genomes of different species (e.g. humans and chimps) is powerful evidence of descent from a common ancestor. They also point out that the IDiots have a hard time explaining such observations [Creationist Logic]. (In fact, no IDiot has ever offered a satisfactory explanation.)

Saturday, March 09, 2013

John Witton Will Pay You $1000 to Answer One of His Questions

John Witton doesn't know much about biochemistry, genetics, or evolution but he's willing to learn. He will pay you $1000 (US) if you can answer any one of the six questions he has posed. He made this offer in the comments to my post: Saturday, February 28, 1953.

Here's what he said ...
I have been known to cause some problems on other forums, for obvious reasons, but I had hoped that on this forum we will be able to get to the bottom of the problems such as" vitalism vs entropy barrier, self assembly of proteins, self-cell membrane formation, metabolism first vs RNA world, why did evolution need 600 types of mangoes and how did they evolve and why?

Why did Larry Moran and Craig Venter evolve to baldness only on the part of the scalp but they have retained their bushy hair on the side and lower back of their scalp????

For those who answer one of these question logically, I am willing to pay $1000.00
I offered to answer two questions; the one on self assembly of proteins and the one on why male pattern baldness evolved. I suggested that John Witton could send the check to a neutral third party and that we could agree on a judge who would decide whether I had answered the questions satisfactorily. I recommended Michael Behe as the judge for the first question and Michael Denton as the judge for the second question.

John Witton agreed. On Saturday, March 2, 2013, he said ...
I’m glad you took the bait Larry…for the lack of better word in English… You are not a very good bluffer though…I’m hoping you don’t play poker and bet large sums of money… Anyway, even though you are paddling back from some of the issues I have presented you know you can’t explain, I’m still going to pursue this transaction, since I can still nail you on those two issues you feel comfortable with…You have nothing to lose...or it might be a little bit of pride, which is fine with me… So, this is what I’m doing. I am sending two cheques $1000.00 US each to Michael Behe and Michael Denton with the explanation of our agreement. They may not like writing extensive explanation as to their judgment or nothing at all, except Larry or John is the winner in their view. We just have to accept that.
Then on Monday he said ...
I have contacted both Behe and Denton. I have emailed the Discovery Institute regarding our arraignment. Even The Star is interested, if Behe participates... I don't think anybody takes you seriously Larry... We'll see.. You seem to be a big mouth that writes text books nobody understands, even you ...;)
I checked with Michael Behe on Thursday but he still had not heard from John Witton. I wasn't able to find out how to contact Michael Denton ... I'm waiting for Witton to send me the contact information since he already got in touch. (If anyone has an email address please send it to me.)

As it turns out. Witton had the stomach flu so he didn't send the checks. I'm sure he'll send them as soon as he feels better. (Apparently the flu strain comes from Canada!)
Larry is right. I have not sent the cheques or the paper to Behe or Denton yet... I'm sick with a bad case of stomach flu...You don't have to believe me... I will try to contact you when I'm better...Sorry to all my supporters...
According to Witton he now "got Larry by the balls." I thought I should let all my enemies know about this so they can watch the spectacle. Some Sandwalk readers might want to help John by answering one of the other questions for $1000.

While we're waiting for John Witton to keep his word, you might enjoy this video of Robert Shapiro (not John Witton) questioning the work on the origin of life. It was posted by John Witton so presumably he likes it.



Saturday, November 12, 2011

A New View of Evolution

There have been lots of new books about evolution in the past decade or so. I tend to divide them into three categories:
  1. The Standard View: These are books that basically support the Modern Synthesis with some small tweaks here and there. They do not advocate major shifts in the way we look at evolution. Books by Richard Dawkins (The Greatest Show on Earth: The Evidence for Evolution), Jerry Coyne (Why Evolution Is True), Sean B. Carroll (Endless Forms Most Beautiful: The New Science of Evo Devo and the Making of the Animal Kingdom, The Making of the Fittest: DNA and the Ultimate Forensic Record of Evolution), and Ken Miller (Only a Theory) fall into this category.
  2. The New View: Some books make the case for a new way of looking at evolution. I'll call it the "New View." Many of Stephen Jay Gould's books fall into this category (The Structure of Evolutionary Theory). He refers to it as extending the modern synthesis. Most of the "extension" is based on a pluralist, rather than an adaptationist approach but other modifications are important. Two recent books by Michael Lynch (Origins of Genome Architecture) and Eugene Koonin (The Logic of Chance: The Nature and Origin of Biological Evolution) fall into this category. It's a view that I share.
  3. The Radical View: Some books advocate a more-or-less complete overthrow of the Modern Synthesis, replacing it with the author's pet theory. Examples are: Marc Kirschner, and John Gerhart (The Plausibility of Life: Resolving Darwin's Dilemma), James Shapiro (Evolution: A View from the 21st Century), Lynn Margulis and Dorion Sagan (Acquiring Genomes: A Theory Of the Origin Of Species), Massimo Pigliucci and Gerd B. Müllerand (editors) (Evolution - the Extended Synthesis), many others.

Friday, September 14, 2012

Does the Central Dogma Still Stand?

Lots of people don't understand the Central Dogma of Molecular Biology and that's probably why there are so many articles announcing its death. The article and book by James Shapiro is just one example [Revisiting the Central Dogma in the 21st Century].

The correct version of the Central Dogma of Molecular Biology is .... [see Basic Concepts: The Central Dogma of Molecular Biology]
... once (sequential) information has passed into protein it cannot get out again (F.H.C. Crick, 1958)

The central dogma of molecular biology deals with the detailed residue-by-residue transfer of sequential information. It states that such information cannot be transferred from protein to either protein or nucleic acid. (F.H.C. Crick, 1970)
Eugene Koonin has an article in Biology Direct entitled Does the central dogma still stand (Koonin, 2012).

Sunday, July 17, 2022

The Function Wars Part XIII: Ford Doolittle writes about transposons and levels of selection

It's theoretically possible that the presence of abundant transposon fragments in a genome could provide a clade with a selective advantage at the level of species sorting. Is this an important contribution to the junk DNA debate?

As I explained in Function Wars Part IX, we need to maintain a certain perspective in these debates over function. The big picture view is that 90% of the human genome qualifies as junk DNA by any reasonable criteria. There's lots of evidence to support that claim but in spite of the evidence it is not accepted by most scientists.

Most scientists think that junk DNA is almost an oxymoron since natural selection would have eliminated it by now. Many scientists think that most of our genome must be functional because it is transcribed and because it's full of transcription factor binding sites. My goal is to show that their lack of understanding of population genetics and basic biochemistry has led them astray. I am trying to correct misunderstandings and the false history of the field that have become prominent in the scientific literature.

For the most part, philosophers and their friends have a different goal. They are interested in epistemology and in defining exactly what you mean by 'function' and 'junk.' To some extent, this is nitpicking and it undermines my goal by lending support, however oblique, to opponents of junk DNA.1

As I've mentioned before, this is most obvious when it comes to the ENCODE publicity campaign of 2012 [see: Revising history and defending ENCODE]. The reason why the ENCODE researchers were wrong is that they didn't understand that many transcription factor binding sites are unimportant and they didn't understand that many transcripts could be accidental. These facts are explained in the best undergraduate textbooks and they were made clear to ENCODE researchers in 2007 when they published their preliminary results. They were wrong because they didn't understand basic biochemistry. [ENCODE 2007]

Some people are trying to excuse ENCODE on the grounds that they simply picked an inappropriate definition of function. In other words, ENCODE made an epistemology error not a stupid biochemistry mistake. Here's another example from a new paper by Ford Doolittle in Biology and Philosophy. He says,

However, almost all of these developments in evolutionary biology and philosophy passed molecular genetics and genomics by, so that publicizers of the ENCODE project’s results could claim in 2012 that 80.4% of the human genome is “functional” (Ecker et al 2012) without any well thought-out position on the meaning of ‘function’. The default assumption made by ENCODE investigators seemed to have been that detectable activities are almost always products of selection and that selection almost always serves the survival and reproductive interests of organisms. But what ENCODE interpreted as functionality was unclear—from a philosophical perspective. Charitably, ENCODE’s principle mistake could have been a too broad and level-ignorant reading of selected effect (SE) “function” (Garson 2021) rather than the conflation of SE and causal role (CR) definitions of “the F-word”, as it is often seen as being (Doolittle and Brunet 2017).

My position is that this is far too "charitable." ENCODE's mistake was not in using the wrong definition of function; their mistake was in assuming that all transcripts and all transcription factor binding sites were functional in any way. That was a stupid assumption and they should have known better. They should have learned from the criticism they got in 2007.

This is only a small part of Doolittle's paper but I wanted to get that off my chest before delving into the main points. I find it extremely annoying that there's so much ink and electrons being wasted on the function wars when the really important issues are a lack of understanding of population genetics and basic biochemistry. I fear that the function wars are contributing to the existing confusion rather than clarifying it.

Doolittle, F. (2022) All about levels: transposable elements as selfish DNAs and drivers of evolution. Biology & Philosophy 37: article number 24 [doi: 10.1007/s10539-022-09852-3]

The origin and prevalence of transposable elements (TEs) may best be understood as resulting from “selfish” evolutionary processes at the within-genome level, with relevant populations being all members of the same TE family or all potentially mobile DNAs in a species. But the maintenance of families of TEs as evolutionary drivers, if taken as a consequence of selection, might be better understood as a consequence of selection at the level of species or higher, with the relevant populations being species or ecosystems varying in their possession of TEs. In 2015, Brunet and Doolittle (Genome Biol Evol 7: 2445–2457) made the case for legitimizing (though not proving) claims for an evolutionary role for TEs by recasting such claims as being about species selection. Here I further develop this “how possibly” argument. I note that with a forgivingly broad construal of evolution by natural selection (ENS) we might come to appreciate many aspects of Life on earth as its products, and TEs as—possibly—contributors to the success of Life by selection at several levels of a biological hierarchy. Thinking broadly makes this proposition a testable (albeit extraordinarily difficult-to-test) Darwinian one.

The essence of Ford's argument builds on the idea that active transposable elements (TEs) are examples of selfish DNA that propagate in the genome. This is selection at the level of DNA. Other elements of the genome, such as genes, regulatory sequences, and origins of replication, are examples of selection at the level of the organism and individuals within a population. Ford points out that some transposon-related sequences might be co-opted to form functional regions of the genome that are under purifying selection at the level of organisms and populations. He then goes on to argue that species with large amounts of transposon-related sequences in their genomes might have an evolutionary advantage because they have more raw material to work with in evolving new functions. If this is true, then this would be an example of species level selection.

These points are summarized near the end of his paper.

Thus TE families, originating and establishing themselves abundantly within a species through selection at their own level may wind up as a few relics retained by purifying selection at the level of organisms. Moreover, if this contribution to the formation of useful relics facilitated the diversification of species or the persistence of clades, then we might also say that these TE families were once “drivers” of evolution at these higher levels, and that their possession was once an adaptation at each such higher level.

There are lots of details that we could get into later but I want to deal with the main speculation; namely, that species with lots of TE fragments in their genome might have an adaptive advantage over species that don't.

This is challenging topic because lots of people have expressed their opinions on many of the topics that Ford covers in his article. None of their opinions are identical and many of them are based on different assumptions about things like evolvability, teleology, the significance of the problem, how to define species sorting, and whether hierachy theory is important . Many of those people are very smart (as is Ford Doolittle) and it hurts my brain trying to figure out who is correct. I'll try and explain some of the issues and the controversies.

A solution in search of a problem?

What's the reason for speculating that abundant bits of junk DNA might be selected because they will benefit the species at some time in the next ten million years or so? Is there a problem that this speculation explains?

The standard practice in science is to suggest hypotheses that account for an unexplained observation; for example, the idea of abundant junk DNA explained the C-value Paradox and the mutation load problem. Models are supposed to have explanatory power—they are supposed to explain something that we don't understand.

Ford thinks there's is a reason for retaining junk DNA. He writes,

Eukaryotes are but one of the many clades emerging from the prokaryotic divergence. Although such beliefs may be impossible to support empirically it is widely held that that was a special and evolutionarily important event....

Assuming this to be true (but see Booth and Doolittle 2015) we might ask if there are reasons for this differential evolutionary success, and are these reasons clade- level properties that have been selected for at this high level? Is one of them the possession of large and variable families of TEs?

You'll have to read his entire paper to see his full explanation but this is the important part. Ford, thinks that the diversity and success of eukaryotes requires an explanation because it can't be accounted for by standard evolutionary theory. I don't see the problem so I don't see the need for an explanation.

Of course there doesn't have to be a scientific problem that needs solving. This could just be a theoretical argument showing that excess DNA could lead to species level selection. That puts it more in the realm of philosophy and Ford does make the point in his paper that one of his goals is simply to defend multilevel selection theory (MLST) as a distinct possibility. The main proponents of this idea (Hierarchy Theory) are Niles Eldredge and Stephen Jay Gould and the theory is thoroughly covered in Gould's book The Structure of Evolutionary Theory. I was surprised to discover that this book isn't mentioned in the Doolittle paper.

I don't have a problem with Hierarchy Theory (or Multilevel Selection Theory, or group selection) as a theoretical possibility. The important question, as far as I'm concerned, is whether there's any evidence to support species selection. As Ford notes, "such beliefs may be impossible to support empirically" and that may be true; however, there's a danger in promoting ideas that have no empirical support because that opens a huge can of worms that less rigorous scientists are eager to exploit.

With respect to the role of transposon-related sequences, the important question, in my opinion, is: Would life look substantially less diverse or less complex if no transposon-related sequences had ever been exapted to form elements that are now under purifying selection? I suspect that the answer is no—life would be different but no less diverse or complex.

Species selection vs species sorting

Speculations about species-level evolution are usually discussed in the context of group selection and species selection or, more broadly, as the levels-of-selection debate. Those are the terms Doolittle uses and he is very much interested in explaining junk DNA as contributing to adaptation at the species level.

But if the insertion of [transcription factor binding sites] TFBSs helps species to innovate and thus diversify (speciate and/or forestall extinction) and is a consequence of TFBS-bearing TE carriage, then such carriage might be cast as an adaptation at the level of species and maintained at that level too, by the differential extinction of TE-deficient species (Linquist et al 2020; Brunet et al 2021).

I think it's unfortunate that we don't use the term 'species sorting' instead of 'species selection' because as soon as you restrict your discussion to selection, you are falling into the adaptationist trap. Elisabeth Vrba, backed by Niles Eldredge, preferred 'species sorting' partly in order to avoid this trap.

I am convinced, on the basis of Vrba's analysis, that we naturalists have been saying 'species selection' when we really should have been calling the phenomenon 'species sorting.' Species sorting is extremely common, and underlies a great deal of evolutionary patterns, as I shall make clear in this narrative. On the other hand, true species selection, in its properly more restricted sense, I now believe to be relatively rare. (Niles Eldredge, in Reinventing Darwin (1995) p. 137)

As I understand it, the difference between 'species sorting' and 'species selection' is that the former term does not commit you to an adaptationist explanation.2 Take the Galapagos finches as an example. There has been fairly rapid radiation of these species from a small initial population that reached the islands. This radiation was not due to any intrinsic propery of the finch genome that made finches more successful at speciation; it was just a lucky accident. Similary, the fact that there are many marsupial species in Australia is probably not because the marsupial genome is better suited to evolution; it's probably just a founder effect at the species level.

Gould still prefers 'species selection' but he recognizes the problem. He points out that whenever you view species as evolving entities within a larger 'population' of other species, you must consider species drift as a distinct possibility. And this means that you can get evolution via a species-level founder effect that has nothing to do with adapation.

Low population (number of species in a clade) provides the enabling criterion for important drift ... at the species level. The analogue of genetic drift—which I shall call 'species drift' must act both frequently and powerfully in macroevolution. Most clades do not contain large numbers of species. Therefore, trends may often originate for effectively random reasons. (Stephen J. Gould, in The Structure of Eolutionary Theory (2001) p. 736)

Let's speculate how this might relate to the current debate. It's possible that the apparent diversity and complexity of large multicellular eukaryotes is mostly due to the fact that they have small populations and long generation times. This means that there were plenty of opportunities for small isolated populations to evolve distinctive features. Thus, we have, for example, more than 1000 different species of bats because of species drift (not species selection). What this means is that the evolution of new species is due to the same reason (small populations) as the evolution of junk DNA. One phenomenon (junk DNA) didn't cause the other (speciation); instead, both phenomena have the same cause.

Michael Lynch has written about this several times, but the important, and mind-hurting, paper is Lynch (2007) where he says,

Under this view, the reductions in Ng that likely accompanied both the origin of eukaryotes and the emergence of the animal and land-plant lineages may have played pivotal roles in the origin of modular gene architectures on which further develomental complexity was built.

Lynch's point is that we should not rule out nonadaptive processes (species drift) in the evolution of complexity, modularity, and evolvability.

If we used species sorting instead of species selection, it would encourage a more pluralsitic perspective and a wider variety of speculations. I don't mean to imply that this issue is ignored by Ford Doolittle, only that it doesn't get the attention it deserves.

Evolvability and teleology

Ford is invoking evolvability as the solution to the evolved complexity and diversity of multicellular eukaryotes. This is not a new idea: it is promoted by James Shapiro, by Mark Kirschner and John Gerhart, and by Günter Wagner, among others. (None of them are referenced in the Doolittle paper.)

The idea here is that clades with lots of TEs should be more successful than those with less junk DNA. It would be nice to have some data the address this question. For example, is the success of the bat clade due to more transposons than other mammals? Probably not, since bats have smaller genomes than other mammals. What about birds? There are lots of bird species but birds seem to have smaller genomes than some of their reptilian ancestors.

There are dozens of Drosophila species and they all have smaller genome sizes than many other flies. In this case, it looks like the small genome had an advantage in evolvability but that's not the prediction.

The concept of evolvability is so attractive that even a staunch gene-centric adaptationist like Richard Dawkins is willing to consider it (Dawkins, 1988). Gould devotes many pages (of course) to the subject in his big Structure book. Both Dawkins and Gould recognize that they are possibly running afoul of teleology in the sense of arguing that species have foresight. Here's how Dawkins puts it ...

It is all too easy for this kind of argument to be used loosely and unrespectably. Sydney Brenner justly ridiculed the idea of foresight in evolution, specifically the notion that a molecule, useless to a lineage of organisms in it own geological era, might nevertheless be retained in the gene pool because of its possible usefulness in some future era: "It might come in handy in the Cretaceous!" I hope I shall not be taken as saying anything like that. We certainly should have no truck with suggestions that individual animals might forego their selfish advantage because of posssible long-term benefits to their species. Evolution has no foresight. But with hindsight, those evolutionary changes in embryology that look as though they were planned with foresight are the ones that dominate successful forms of life.

I interpret this to mean that we should not be fooled by hindsight into looking for causes when what we are seeing is historical contingency. If you have not already read Wonderful Life by Stephen Jay Gould then I highly recommend that you get a copy and read it now in order to understand the role of contingency in the evolution of animals. You should also brush up on the more recent contributions to the tape-of-life debate in order to put this discussion about evolvability into the proper context [Replaying life's tape].

Ford also recognizes the teleological problem and even quotes Sydney Brenner! Here's how Ford explains the relationship between transposon-related sequences and species selection.

As I argue here, organisms took on the burden of TEs not because TE accumulation, TE activity or TE diversity are selected-for traits within any species, serving some current or future need, but because lower-level (intragenomic) selection creates and proliferates TEs as selfish elements. But also, and just possibly, species in which this has happened speciate more often or last longer and (even more speculatively still) ecosystems including such species are better at surviving through time, and especially through the periodic mass extinctions to which this planet has been subjected (Brunet and Doolittle 2015). ‘More speculatively still’ because the adaptations at higher levels invoked are almost impossible to prove empirically. So what I present are again only ‘how possibly’, not ‘how actually’ arguments (Resnick 1991).

This is diving deeply into the domain of abstract thought that's not well-connected to scientific facts. As I mentioned above, I tend to look on these speculations as solutions looking for a problem. I would like to see more evidence that the properties of genomes endow certain species with more power to diversify than species with different genomic properties. Nevertheless, the idea of evolvability is not going away so let's see if Ford's view is reasonable.

As usual, Stephen Jay Gould has thought about this deeply and come up with some useful ideas. His argument is complicated but I'll try and explain it in simple terms. I'm relying mostly on the section called "Resolving the paradox of Evolvability and Defining the Exaptive Pool" in The Structure of Evolutionary Theory pages 1270-1295.

Gould argues that in Hierarchy Theory, the properties at each level of evolution must be restricted to that level. Thus, you can't have evolution at the level of DNA impinging on evolution at the level of the organism. For example, you can't have selection between transposons within a genome affecting evolution at the level of organisms and population. Similarly, selection at the level of organisms can't directly affect species sorting.

What this means in terms of genomes full of transposon-related sequences is the following. Evolution at the level of species involves sorting (or selection) between different species or clades. Each of these species have different properties that may or may not make them more prone to speciations but those properties are equivalent to mutations, or variation, at the level of organisms. Some species may have lots of transposon sequences in their genome and some may have less and this difference arises just by chance as do mutations. There is no foresight in generating mutations and there is no foresight in having different sized genomes.

During species sorting, the differences may confer some selective advantage so species with, say, more junk DNA are more likely to speciate but the differences arose by chance in the same sense that mutations arise by chance (i.e. with no foresight). For example, in Lenski's long-term evolution experiment, certain neutral mutations became fixed by chance so that new mutations arising in this background became adaptive [Contingency, selection, and the long-term evolution experiment]. Scientists and philosophers aren't concerned about whether those neutral mutations might have arisen specifically in order to potentiate future evolution.

Similarly, it is inappropriate to say that transposons, or pervasive transcription, or splicing errors, arose BECAUSE they encouraged evolution at the species level. Instead, as Dawkins said, those features just look with hindsight as though they were planned. They are fortuitous accidents of evolution.

Gould also makes the point, again, that we could just as easily be looking at species drift as species selection and we have to be careful not to resort to adaptive just-so stories in the absence of evidence for selection.

Here's how Gould describes his view of evolvability using the term "spandrel" to describe potentiating accidents.

Thus, Darwinians have always argued that mutational raw material must be generated by a process other than organismal selection, and must be "random" (in the crucal sense of undirected towards adaptive states) with respect to realized pathways of evolutionary change. Traits that confer evolvability upon species-individuals, but arise by selection upon organisms, provide a precise analog at the species level to the classical role of mutation at the organismal level. Because these traits of species evolvability arise by a different process (organismal selection), unrelated to the selective needs of species, they may emerge as the species level as "random" raw material, potentially utilizable as traits for species selection.

The phenotypic effects of mutation are, in exactly the same manner, spandrels at the organismal level—that is, nonadaptive and automatic manifestations at a higher level of different kinds of causes acting directly at a lower level. The exaptation of a small and beneficial subset of these spandrels virtually defines the process of natural selection. Why else do we so commonly refer to the theory of natural selection as as interplay of "chance" (for the spandrels of raw material in mutational variation) and "necessity" (for the locally predictable directions of selection towards adaptation). Similarly, species selection operates by exapting emergent spandrels from causal processes acting upon organisms.

This is a difficult concept to gasp so I urge interested readers to study the relevant chapter in Gould's book. The essence of his argument is that species sorting can only be understood at the level of species as individuals and the properties of species as the random variation upon which species sorting operates.

Michael Lynch is also skeptical about evolvability but for slightly different reasons (Lynch, 2007). Lynch is characteristically blunt about how he views anyone who disagrees with him. (I have been on the losing side of one of those disagreement and I still have the scars to prove it.)

Four of the major buzzwords in biology today are complexity, modularity, evolvability, and robustness, and it is often claimed that ill-defined mechanisms not previously appreciated by evolutionary biologists must be invoked to explain the existence of emergent properties that putatively enhance the long-term success of extant taxas. This stance is not very different from the intelligent-design philosophy of invoking unknown mechanisms to explain biodiversity.

This is harsh and somewhat unfair since nobody would accuse Ford Doolittle of ulterior motives. Lynch's point is that evolvability must be subjected to the same rigorous standards that he applies to population genetics. He questions the idea that "the ability to evolve itself is actively promoted by directional selection" and raises four objections.

  1. Evolvability doesn't meet the stringent conditions that a good hypothesis demands.
  2. It's not clear that the ability to evolve is necessarily advantageous.
  3. There's no evidence that differences between species are anything other than normal variation.
  4. "... comparative genomics provides no support for the idea that genome architectural changes have been promoted in multicellular lineages so as to enhance their ability to evolve.

Why transposon-related sequences?

One of the problems that occurred to me was why there was so much emphasis on transposon sequences. Don't the same arguments apply to pseudogenes, random duplications, and, especially, genome doublings? They do, but the paper appears to be part of a series that arose out of a 2018 meeting on Evolutionary Roles of Transposable Elements: The Science and Philosophy organized by Stefan Linquist and Ford Doolittle. That's why there's a focus on transposons. I assume that Ford could make the same case for other properties of large genomes such as pervasive transcription, spurious transcription binding sites, and splicing errors even if they had nothing to do with transposons.

Is this an attempt to justify junk?

I argue that genomes are sloppy and junk DNA accumulates just because it can. There's no ulterior motive in having a large genome full of junk and it's far more likely to be slightly deleterious than neutral. I believe that all the evidence points in that direction.

This is not a popular view. Most scientists want to believe that all that of excess DNA is there for a reason. If it doesn't have a direct functional role then, at the very least, it's preserved in the present because it allows for future evolution. The arguments promoted by Ford Doolittle in this article, and by others in related articles, tend to support those faulty views about the importance of junk DNA even though that wasn't the intent. Doolittle's case is much more sophisticated than the naive views of junk DNA opponents but, nevertheless, you can be sure that this paper will be referenced frequently by those opponents.

Normal evolution is hard enough but multilevel selection is even harder, especially for molecular biologists who would never think of reading The Structure of Evolutionary Theory, or any other book on evolution. That's why we have to be really careful to distinguish between effects that are adaptations for species sorting and effects that are fortuitous and irrelevant for higher level sorting.

Function Wars
(My personal view of the meaning of function is described at the end of Part V.)

1. The same issues about function come up in the debate over alternative splicing [Alternative splicing and evolution].

2. See Vrba and Gould (1986) for a detailed discussion of species sorting and species seletion and how it pertains to the hierarchical perspective.

Dawkins, R. (1988) The Evolution of Evolvability. Artifical Life, The proceedings of an Interdisciplinary Workshp on The Synthesis and Simulation of Living Systems held September 1987 in Los Alamos, New Mexico. C. G. Langton, Addison-Wesley Publishing Company: 201-220.

Lynch, M. (2007) The frailty of adaptive hypotheses for the origins of organismal complexity. Proceedings of the National Academy of Sciences 104:8597-8604. [doi: 10.1073/pnas.0702207104

Vrba, E.S. and Gould, S.J. (1986) The hierarchical expansion of sorting and selection: sorting and selection cannot be equated. Paleobiology 12:217-228. [doi: 10.1017/S0094837300013671]

Sunday, September 02, 2012

How to Get Banned on Sandwalk

I try really hard not to ban anyone from commenting on Sandwalk but there are some things I will not tolerate.

Someone named David Roemer recently tested the limits of my patience, and failed. He is now banned.

Here's what happened. I received an email message from David Roemer about a comment of his that did not appear on Sandwalk. I don't know why it didn't appear. I don't remember seeing it.

Shortly after receiving the email message I received a copy of a message David Roemer sent to the chair of my department. Here's the beginning ...
Dear Dr. XXX,

Prof. Moran, I believe, didn't approve of the following comment I made on his Sandwalk blog. He has every right to do so, but he has a moral duty not to coverup the misinformation contained in the AJP article I mention in my censored comment:

Natural selection only explains the adaptation of species to the environment. Not enough is known about the innovations natural selection acts upon to understand how mammals evolved from bacteria in only 3.5 billion years (common descent). The only theory that attempts to explain common descent is ID, but there is no evidence for ID.

IDiots try to make their theory look better by comparing it with natural selection. Atheists go along with this scam because they don’t want to admit that ID is a better theory than natural selection in some sense.

A corollary of the limitations of natural selection is that the second law of thermodynamics doesn’t apply to evolution, just as it doesn’t apply to the evolution of stars. Nevertheless, there is scientific literature about whether evolution violates the second law. Authors on the “does not” side argue that heat energy from the sun accounts for the increase in order (decrease in entropy). Heat, of course, tends to increase disorder.

This nonsense reached an extreme level in an article published by the American Journal of Physics (Entropy and evolution, Nov. 2008). This article actually calculates the entropy of the biosphere using the Boltzmann constant and an estimate of the thermodynamic probability of life. I’m trying to get the AJP to retract this absurd article.

I'm copying David Novak because he is on the Institute Board of First Things, which is refusing to publish my attached essay explaining why the AJP article is absurd. Both Novak and Moran are helping the AJP lie about evolution and thermodynamics.
My chair will be amused by this sort of thing. There's nothing he could do about it even if he wanted to.

This is one of the criteria for banning. Anyone who tries to get someone fired or reprimanded by going over their head to their employer will be banned. Anyone who harasses the family and friends of someone they disagree with will be banned. There are no exceptions.

I've also banned John Kwok for doing the same thing in an attempt to silence Jim Shapiro.


Tuesday, June 28, 2016

New Trends in Evolutionary Biology: The Program

I'm going to London next November to attend The Royal Society conference on New trends in evolutionary biology: biological, philosophical and social science perspectives. This is where all the scientists who want to change evolution will be gathering to spout their claims.

Developments in evolutionary biology and adjacent fields have produced calls for revision of the standard theory of evolution, although the issues involved remain hotly contested. This meeting will present these developments and arguments in a form that will encourage cross-disciplinary discussion and, in particular, involve the humanities and social sciences in order to provide further analytical perspectives and explore the social and philosophical implications.
The program has been published. Here's the list of speakers ...

Gerd B. Müller
The extended evolutionary synthesis

Douglas Futuyma
The evolutionary synthesis today: extend or amend?

Sonia Sultan
Re-conceiving the genotype: developmental plasticity

Russell Lande

Evolution of phenotypic plasticity

Tobias Uller
Heredity and evolutionary theory

John Dupré
The ontology of evolutionary process

Paul Brakefield

Can the way development works bias the path taken by evolution?

Kevin Laland
Niche construction

James Shapiro
Biological action in read-write genome evolution

Paul Griffiths
Genetics/epigenetics in development/evolution

Eva Jablonka
Epigenetic inheritance

Greg Hurst
Symbionts in evolution

Denis Noble
Evolution viewed from medicine and physiology

Andy Gardner
Anthropomorphism in evolutionary biology

Sir Patrick Bateson
The active role of the organism in evolution

Karola Stotz

Developmental niche construction

Tim Lewens
A science of human nature

Agustín Fuentes
Human niche, human behaviour, human nature

Andrew Whiten
The second inheritance system: the extension of biology through culture

Susan Antón
Human evolution, niche construction and plasticity

Melinda Zeder
Domestication as a model system for evolutionary biology

I didn't know that Paul Griffiths and Karola Stotz were going. It's a bit surprising that they would associate with some of these views. I'm glad that Douglas Futuyma will be there to represent the voice of reason. He seems to be one of the few speakers who understands modern evolutionary theory.

There are still a few spots available, according to the organizers. Sign up quickly.

The meeting is at Carlton House Terrace, which is just a few blocks from Trafalger Square and a short walk down The Mall to Buckingham Palace where the Corgis live.


Tuesday, November 21, 2006

Why the US Should Spring for a New Particle Accelerator

Harold T. Shapiro explains in SEED "Why the US Should Spring for a New Particle Accelerator". He writes, ...
The US must develop a compelling bid to host the International Linear Collider in order to safeguard American science.
Sounds good to me. It's in all our best interests that America maintain an active presence in international front-line science. Besides, it's quicker for Canadians to fly to the US than to Geneva. :-)

The photograph shows workers celebrating the connection of the first sector of the Large Hadron Collider in Geneva on November 10, 2006. It won't be long now 'till they start bashing things together. That's what physicists do these days and it cost a lot of money. Biochemists can smash things for much less money.

Wednesday, April 01, 2015

Physiologists fall for the Third Way


I looked forward to this "conversation" because I was already familiar with Denis Noble and his strange views of evolution [A physiologist thinks about evolution]. Noble reiterated his view of modern evolutionary theory at the meeting. He thinks that modern evolutionary theory (The Modern Synthesis or Neo-Darwinism) is all about random mutation and natural selection. He thinks it is based on the views of Richard Dawkins in The Selfish Gene. Neither he nor Michael Joyner (an anaethesiologist at the Mayo Clinic) have learned about random genetic drift or Neutral Theory and neither of them have much knowledge of population genetics. In other words, they are pretty ignorant about evolution even though they feel entitled to attack it.

Thursday, May 08, 2014

More primordial soup nonsense

I just discovered a new paper on the origin of life (Keller et al. 2014). The authors think they are looking at the first primitive biochemical pathways, which they identify as glycolysis and the pentose phosphate pathways.

Here's what they did. They took a bunch of pure sugar phosphates1 and dissolved them in water containing salts and metal ions that were likely present in the primordial oceans. They heated the solution up to 70° C and looked at the degradation products. Low and behold, the sugar phosphates degraded and sometime the products were other intermediates in the glycolytic and pentose phosphate pathway, including pyruvate and glucose.

They conclude that ...

Tuesday, August 26, 2008

The Trichoplax Genome

 
Trichoplax adherens is a very simple animal that moves about on surfaces like a gigantic amoeba and ingests any food that it flows over. There are thought to be several species of Trichoplax in addition to Trichoplax adherens.

Because this is such a simple and unusual animal it has been assigned its own phylum, Placozoa with Trichoplax as the only genus.1

The diagram below is copied from Syed and Shierwater (2002). It shows clearly that Trichoplax adhaerens is a true metazoan with an upper (dorsal) epithelial layer, a lower (ventral) epithelial layer, and an internal layer of contractile fiber cells. There are at least four cell types, not counting the egg and sperm cells that have been reported by others.


Where does Trichoplax fit in the evolution of animals? Clearly, the lineage leading to modern Trichoplax must have diverged very early in animal evolution. This is why Trichoplax is often (incorrectly) referred to as a "primitive animal", or a "living fossil." (See Ryan Gregory's discussion of this terminology at: Kudos on the placozoan genome!.)

The exact branch point is hotly disputed. Did the ancestors of Trichoplax split off before or after the sponges (Porifera) or the Cnideria (jelleyfish, hydras, corals)? Is the modern form of Trichoplax the ancestral form or is it a derived and simplified version of a more complex animal?



The complete genome sequence of Trichoplax adherens has just been published in Nature (Srivastava et al. 2008). There's a pretty good press release on Bio News Net [Genome of simplest animal reveals ancient lineage, confounding array of complex capabilities]. In addition to Ryan Gregory's review, there's another by John Timmer at Nobel Intent (Ars Technica) [Sequencing the bizarre: the genome of a living fossil].

Trichoplax adherens has six chromosomes and a total genome size of about 98 × 106 base pairs (98 Mb). The authors identified 11,514 protein-encoding genes. Because the genome sequence is "only" 98% complete, it wasn't possible to reconstruct entire chromosomes and the association between the sequenced genome and particular chromosomes is impossible to establish due to the absence of genetic studies on Trichoplax (no linkage maps).

The genome is smaller than that of the green alga Chlamydomonas reinhardtii with a genome of 121 Mb and about 15,000 genes [The Genome of Chlamydomonas reinhardtii]. On the other hand, the Trichoplax genome is larger than that of other single-cell organisms such as the protist Giardia lamblia (12 Mb, ~6500 genes) [The Giardia lamblia Genome].

The Trichoplax genome is almost the same size as the C. elegans (nematode) genome at 97 Mb but C. elegans is thought to have more than 15,000 genes. Drosophila melanogaster at 180 Mb has ~16,000 genes and mammals have a genome of 3,300 Mb and 20,000 genes.

About 90% of the Trichoplax genes are present in other animals and the intron positions of the Trichoplax are mostly identical to those in other animals [Junk in Your Genome: Intron Size and Distribution]. This is powerful evidence that the phylum Placozoa belongs in the animal kingdom.

Srivastava et al. constructed a phylogenetic tree using 104 highly conserved genes from species whose complete genomes are available in the sequence databases. The tree (below) shows that the Trichoplax lineage branches after sponges (represented by Amphimedon queenslandica) but before cnidarians (Hydra magnipapillata). The result are not compatible with trees constructed using mitochondrial sequences or ribosomal RNA sequences but that's not too surprising. Mitochondrial DNA and ribosomal RNA sequences are often not reliable for this kind of work.


The conclusion is that Placozoa and most metazoans diverged about 600 million years ago but sponges diverged even earlier.


1. It isn't unusual to create separate phyla for organisms with distinct body plans but you wouldn't know that from the criticisms leveled at Stephen Jay Gould when he published Wonderful Life [Science and Philosophy Book Club: Wonderful Life]. Incidentally, in The Ancestor's Tale Dawkins readily accepts that Trichoplax adherens may be the sole species in the phylum Placozoa.

[Image Credit: The photograph of Trichoplax is from metamorphnet. That website also has some wonderful movies of Trichoplax.

Srivastava, M., Begovic, E., Chapman, J., Putnam, N.H., Hellsten, U., Kawashima, T., Kuo, A., Mitros, T., Salamov, A., Carpenter, M.L., Signorovitch, A.Y., Moreno, M.A., Kamm, K., Grimwood, J., Schmutz, J., Shapiro, H., Grigoriev, I.V., Buss, L.W., Schierwater, B., Dellaporta, S.L., Rokhsar, D.S. (2008) The Trichoplax genome and the nature of placozoans. Nature 454:955-960. [doi:10.1038/nature07191]