
Secondary structures are ordered structures formed by internal hydrogen bonding between amino acid residues. The common secondary structures are the α helix, the β strand, and various loops and turns. The β sheet is often counted as secondary structure although, strictly speaking, it is a motif (see below).


In some cases, a particular domain is shared by several proteins suggesting that different proteins can be formed by combining various domains that evolved separately. In other cases, similar domain structures might arise independently by convergent evolution.
Quaternary structure only applies to proteins that are composed of more than one polypeptide chain. Each of the polypeptides is called a subunit. The subunits might be identical, as in the example shown above, or they might be very different as in my favorite enzyme ubiquinone:cytochrome c oxidoreductase (complex III).

The vast majority of motifs do not have a common evolutionary origin in spite of many claims to the contrary. They arise independently and converge on a common stable structure. The fact that these same motifs occur in hundreds of different proteins indicates that there are a limited number of possible folds in the universe of protein structures. The original primitive protein may have been relatively unstructured but over time there will be selection for more and more stable structures. This selection will favor the common motifs.

[Figure Credit: The figures are from Horton et al. (2006)]
Horton, H.R., Moran, L.A., Scrimgeour, K.G., perry, M.D. and Rawn, J.D. (2006) Principles of Biochemisty. Pearson/Prentice Hall, Upper Saddle River N.J. (USA)