More Recent Comments

Tuesday, October 31, 2017

The history of DNA sequencing

This year marks the 40th anniversary of DNA sequencing technology (Gilbert and Maxam, 1977; Sanger et al., 1977)1 The Sanger technique soon took over and by the 1990s it was the only technique used to sequence DNA. The development of reliable sequencing machines meant the end of those large polyacrylamide gels that we all hated.

Pyrosequencing was developed in the mid 1990's and by the year 2000 massive parallel sequencing using this technique was becoming quite common. This "NextGen" sequencing technique was behind the massive explosion in sequences in the early part of the 21st century.2

Even newer techniques are available today and there's a debate about whether they should be called Third Generation Sequencing (Heather and Chain, 2015).

Nature has published a nice review of the history of DNA sequencing (Shendure et al., 2017). I recommend it to anyone who's interested in the subject. The figure above is taken from that article.


1. Many labs were using the technology in 1976 before the papers were published.

2. New software and enhanced computer power played an important, and underappreciated, role.

Heather, J.M., and Chain, B. (2015) The sequence of sequencers: The history of sequencing DNA. Genomics, 107:1-8. [doi: 10.1016/j.ygeno.2015.11.003]

Maxam, A.M., and Gilbert, W. (1980) Sequencing end-labeled DNA with base-specific chemical cleavages. Methods in enzymology, 65:499-560. [doi: 10.1016/S0076-6879(80)65059-9]

Sanger, F., Nicklen, S., and Coulson, A.R. (1977) DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, 74:5463-5467. [PDF]

Shendure, J., Balasubramanian, S., Church, G.M., Gilbert, W., Rogers, J., Schloss, J.A., and Waterston, R.H. (2017) DNA sequencing at 40: past, present and future. Nature, 550:345-353. [doi: 10.1038/nature24286]


Escape from X chromosome inactivation

Mammals have two sex chromosomes: X and Y. Males have one X chromosome and one Y chromosome and females have two X chromosomes. Since females have two copies of each X chromosome gene, you might expect them to make twice as much gene product as males of the same species. In fact, males and females often make about the same amount of gene product because one of the female X chromosomes is inactivated by a mechanism that causes extensive chromatin condensation.

The mechanism is known as X chromosome inactivation. The phenomenon was originally discovered by Mary Lyon (1925-2014) [see Calico Cats].

Saturday, October 28, 2017

Creationists questioning pseudogenes: the GULO pseudogene

This is the second post discussing creationist1 papers on pseudogenes. The first post addressed a paper by Jeffrey Tomkins on the β-globin pseudogene [Creationists questioning pseudogenes: the beta-globin pseudogene]. This post covers another paper by Tomkins claiming that the GULO pseudogenes in various primate species are not derived from a common ancestor but instead have been deactivated independently in each lineage.

The Tomkins' article was published in 2014 in Answers Research Journal, a publication that describes itself like this:
ARJ is a professional, peer-reviewed technical journal for the publication of interdisciplinary scientific and other relevant research from the perspective of the recent Creation and the global Flood within a biblical framework.

Saturday, October 14, 2017

Creationists questioning pseudogenes: the beta-globin pseudogene

Jonathan Kane recently (Oct. 6, 2017) posted an article on The Panda's Thumb where he claimed that Young Earth Creationists often don't get enough credit for raising serious issues about evolution [Five principles for arguing against creationism].

He mentioned some articles about pseudogenes as prime examples. I asked him for references and he responded with two articles by Jeffrey Tomkins that were published on the Answers in Genesis website. The first was on the β-globin pseudogene and the second was on the GULO pseudogene. Both articles claim that these DNA sequences aren't really pseudogenes because they have functions.

I'll deal with the β-globin pseudogene in this post and the GULO pseudogene in a subsequent post.

Wednesday, October 11, 2017

Historical evolution is determined by chance events

Modern evolutionary theory is based on the idea that alleles become fixed in a population over time. They can be fixed by natural selection if they confer selective advantage or they can be fixed by random genetic drift if they are nearly neutral or slightly deleterious [Learning about modern evolutionary theory: the drift-barrier hypothesis]. Alleles arise by mutation and the path that a population follows over time depends on the timing of mutations [Mutation-Driven Evolution]. That's largely a chance event.

Wednesday, September 13, 2017

Sequencing human diploid genomes

Most eukaryotes are diploid, including humans. They have two copies of each autosome. Thousands of human genomes have been sequenced but in almost all cases the resulting genome sequence is a mixture of sequences from homologous chromosomes. If a site is heterogeneous—different alleles on each chromosome—then these are entered as variants.

Monday, September 11, 2017

What's in Your Genome?: Chapter 4: Pervasive Transcription (revised)

I'm working (slowly) on a book called What's in Your Genome?: 90% of your genome is junk! The first chapter is an introduction to genomes and DNA [What's in Your Genome? Chapter 1: Introducing Genomes ]. Chapter 2 is an overview of the human genome. It's a summary of known functional sequences and known junk DNA [What's in Your Genome? Chapter 2: The Big Picture]. Chapter 3 defines "genes" and describes protein-coding genes and alternative splicing [What's in Your Genome? Chapter 3: What Is a Gene?].

Chapter 4 is all about pervasive transcription and genes for functional noncoding RNAs. I've finally got a respectable draft of this chapter. This is an updated summary—the first version is at: What's in Your Genome? Chapter 4: Pervasive Transcription.

Saturday, September 09, 2017

Cold Spring Harbor tells us about the "dark matter" of the genome (Part I)


This is a podcast from Cold Spring Harbor [Dark Matter of the Genome, Pt. 1 (Base Pairs Episode 8)]. The authors try to convince us that most of the genome is mysterious "dark matter," not junk. The main theme is that the genome contains transposons that could play an important role in evolution and disease.

Wednesday, August 30, 2017

Experts meet to discuss non-coding RNAs - fail to answer the important question

The human genome is pervasively transcribed. More than 80% of the genome is complementary to transcripts that have been detected in some tissue or cell type. The important question is whether most of these transcripts have a biological function. How many genes are there that produce functional non-coding RNA?

There's a reason why this question is important. It's because we have every reason to believe that spurious transcription is common in large genomes like ours. Spurious, or accidental, transcription occurs when the transcription initiation complex binds nonspecifically to sites in the genome that are not real promoters. Spurious transcription also occurs when the initiation complex (RNA plymerase plus factors) fires in the wrong direction from real promoters. Binding and inappropriate transcription are aided by the binding of transcription factors to nonpromoter regions of the genome—a well-known feature of all DNA binding proteins [see Are most transcription factor binding sites functional?].

Sunday, August 27, 2017

The Extended Evolutionary Synthesis - papers from the Royal Society meeting

I went to London last November to attend the Royal Society meeting on New trends in evolutionary biology: biological, philosophical and social science perspectives [New Trends in Evolutionary Biology: The Program].

The meeting was a huge disappointment [Kevin Laland's new view of evolution]. It was dominated by talks that were so abstract and obtuse that it was difficult to mount any serious discussion. The one thing that was crystal clear is that almost all of the speakers had an old-fashioned view of the current status of evolutionary theory. Thus, they were for the most part arguing against a strawman version of evolutionary theory.

The Royal Society has now published the papers that were presented at the meeting [Theme issue ‘New trends in evolutionary biology: biological, philosophical and social science perspectives’ organized by Denis Noble, Nancy Cartwright, Patrick Bateson, John Dupré and Kevin Laland]. I'll list the Table of Contents below.

Most of these papers are locked behind a paywall and that's a good thing because you won't be tempted to read them. The overall quality is atrocious—the Royal Society should be embarrassed to publish them.1 The only good thing about the meeting was that I got to meet a few friends and acquaintances who were supporters of evolution. There was also a sizable contingent of Intelligent Design Creationists at the meeting and I enjoyed talking to them as well2 [see Intelligent Design Creationists reveal their top story of 2016].

Friday, August 25, 2017

Niles Eldredge explains punctuated equilibria

Lots of people misunderstand punctuated equilibria. It's a theory about small changes leading to speciation. In many cases the changes are so slight that you and I might not notice the difference. These are not leaps or saltations and there are no intermediates or missing links. The changes may be due to changes in the frequency of one or two alleles.

Punctuated equilibria are when these speciation events take place relatively quickly and are followed by much longer periods of stasis (no change). Niles Eldredge explains how the theory is derived from his studies of thousands of trilobite fossils.



Niles Eldredge explains hierarchy theory

You may not agree but you should at least know what some evolutionary biologists are thinking.



How much of the human genome is devoted to regulation?

All available evidence suggests that about 90% of our genome is junk DNA. Many scientists are reluctant to accept this evidence—some of them are even unaware of the evidence [Five Things You Should Know if You Want to Participate in the Junk DNA Debate]. Many opponents of junk DNA suffer from what I call The Deflated Ego Problem. They are reluctant to concede that humans have about the same number of genes as all other mammals and only a few more than insects.

One of the common rationalizations is to speculate that while humans may have "only" 25,000 genes they are regulated and controlled in a much more sophisticated manner than the genes in other species. It's this extra level of control that makes humans special. Such speculations have been around for almost fifty years but they have gained in popularity since publication of the human genome sequence.

In some cases, the extra level of regulation is thought to be due to abundant regulatory RNAs. This means there must be tens of thousand of extra genes expressing these regulatory RNAs. John Mattick is the most vocal proponent of this idea and he won an award from the Human Genome Organization for "proving" that his speculation is correct! [John Mattick Wins Chen Award for Distinguished Academic Achievement in Human Genetic and Genomic Research]. Knowledgeable scientists know that Mattick is probably wrong. They believe that most of those transcripts are junk RNAs produced by accidental transcription at very low levels from non-conserved sequences.

Monday, August 07, 2017

A philosopher defends agnosticism

Paul Draper is a philosopher at Purdue University (West Lafayette, Indiana, USA). He has just (Aug. 2, 2017) posted an article on Atheism and Agnosticism on the Stanford Encyclopedia of Philosophy website.

Many philosphers use a different definition of atheism than many atheists. Philosophers tend to define atheism as the proposition that god(s) do not exist. Many atheists (I am one) define atheism as the lack of belief in god(s). The distinction is important but for now I want to discuss Draper's defense of agnosticism.

Keep in mind that Draper defines atheism as "god(s) don't exist." He argues, convincingly, that this proposition cannot be proven. He also argues that theism—the proposition that god(s) exist—can also not be proven. Therefore, the only defensible position for a philosopher like him is agnosticism.

Friday, August 04, 2017

To toss or not to toss?

Now that I'm officially retired I've been cleaning out my office at the university and transferring all the important stuff to my home office. I'm taking advantage of this opportunity to throw out everything that I don't want any more. Eventually I'll have to vacate my university office because it's due to be renovated and transferred to another department.

Some stuff is easy to toss out and some stuff is easy to keep. It's the other stuff that causes a problem. Here's an example ....


These are the manuals that came with my very first PC back in 1981. I know I'll never use them but I'm kinda attached to them. Are they antiques yet?


Thursday, July 27, 2017

talk.origins evolves

The newsgroup talk.origins was created more than 30 years ago. It's been a moderated newsgroup for the past twenty years. The moderator is David Greig and the server, named "Darwin," has been sitting in my office for most of that time. I retired on June 30th and my office is scheduled for renovation so Darwin had to move. Another complication is that the moderator is moving from Toronto to Copenhagen, Denmark.

So talk.origins evolves and the server is moving elsewhere. Goodby Darwin.



Friday, July 14, 2017

Bastille Day 2017

Today is the Fête Nationale in France known also as "le quatorze juillet" or Bastille Day.

This is the day in 1789 when French citizens stormed and captured the Bastille—a Royalist fortress in Paris. It marks the symbolic beginning of the French revolution although the real beginning is when the Third Estate transformed itself into the National Assembly on June 17, 1789 [Tennis Court Oath].

Ms. Sandwalk and I visited the site of the Bastille (Place de la Bastille) when we were in Paris in 2008. There's nothing left of the former castle but the site still resonates with meaning and history.

One of my wife's ancestors is William Playfair, the inventor of pie charts and bar graphs [Bar Graphs, Pie Charts, and Darwin]. His work attracted the attention of the French King so he moved to Paris in 1787 to set up an engineering business. He is said to have participated in the storming of the Bastille but he has a history of exaggeration and untruths so it's more likely that he just witnessed the event. He definitely lived nearby and was in Paris on the day in question. (His son, my wife's ancestor, was born in Paris in 1790.)

In honor of the French national day I invite you to sing the French national anthem, La Marseillaise. An English translation is provided so you can see that La Marseillaise is truly a revolutionary call to arms. (A much better translation can be found here.)1



1. I wonder if President Trump sang La Marseillaise while he was at the ceremonies today?

Check out Uncertain Principles for another version of La Marseillaise—this is the famous scene in Casablanca.

Reposted and modified from 2016.

Revisiting the genetic load argument with Dan Graur

The genetic load argument is one of the oldest arguments for junk DNA and it's one of the most powerful arguments that most of our genome must be junk. The concept dates back to J.B.S. Haldane in the late 1930s but the modern argument traditionally begins with Hermann Muller's classic paper from 1950. It has been extended and refined by him and many others since then (Muller, 1950; Muller, 1966).

Thursday, July 06, 2017

Scientists say "sloppy science" more serious than fraud

An article on Nature: INDEX reports on a recent survey of scientists: Cutting corners a bigger problem than research fraud. The subtitle says it all: Scientists are more concerned about the impact of sloppy science than outright scientific fraud.

The survey was published on BioMed Central.

Tuesday, July 04, 2017

Another contribution of philosophy: Bernard Lonergan

The discussion about philosophy continues on Facebook. One of my long-time Facebook friends, Jonathan Bernier, took up the challenge. Bernier is a professor of religious studies at St. Francis Xavier University in Nova Scotia, Canada. He is a card-carrying philosopher.1

The challenge is to provide recent (past two decades) examples from philosophy that have lead to increased knowledge and understanding of the natural world. Here's what Jonathan Bernier offered.
But to use just one example of advances in philosophical understanding, UofT (specifically Regis College) houses the Lonergan Research Institute, which houses Bernard Lonergan's archives and publishes his collected works. Probably his most significant work is a seven-hundred-page tome called Insight, the first edition of which was published in 1957. It is IMHO the single best account of how humans come to know anything that has ever been written. The tremendous fruits that it has wrought cannot be summarized in a FB commend. Instead, I'd suggest that you walk over and see the friendly people at the LRI. No doubt they could help answer some of your questions.
Here's a Wikipedia link to Bernard Lonergan. He was a Canadian Jesuit priest who died in 1984. Regis College is the Jesuit College associated with the University of Toronto.

Is Jonathan Bernier correct? Is it true that Lonergan's works will eventually change the way we understand learning?


Note: In my response to Bernier on Facebook I said, "I guess I'll just have to take our word for it. I'm not about to walk over to Regis College and consult a bunch of Jesuit priests about the nature of reality." Was I being too harsh? Is this really an examples of a significant contribution of philosophy? Is it possible that a philosopher could be very wrong about the existence of supernatural beings but still make a contribution to the nature of knowledge and understanding?

1. Jonathan Bernier tells me on Facebook that he is not a philosopher and never claimed to be a philosopher.

Monday, July 03, 2017

Contributions of philosophy

I've been discussing the contributions of philosophy on Facebook. Somebody linked to a a post on the topic: What has philosophy contributed to society in the past 50 years?. Here's one of contributions ... do you agree?
Philosophers, historians, and sociologists of science such as Thomas Kuhn, Paul Feyerabend, Bruno Latour, Bas van Fraassen, and Ian Hacking have changed the way that we see the purpose of science in everyday life, as well as proper scientific conduct. Kuhn's concept of a paradigm shift is now so commonplace as to be cliche. Meanwhile, areas like philosophy of physics and especially philosophy of biology are sites of active engagement between philosophers and scientists about the interpretation of scientific results.


Sunday, July 02, 2017

Confusion about the number of genes

My last post was about confusion over the sizes of the human and mouse genomes based on a recent paper by Breschi et al. (2017). Their statements about the number of genes in those species are also confusing. Here's what they say about the human genome.
[According to Ensembl86] the human genome encodes 58,037 genes, of which approximately one-third are protein-coding (19,950), and yields 198,093 transcripts. By comparison, the mouse genome encodes 48,709 genes, of which half are protein-coding (22,018 genes), and yields 118,925 transcripts overall.
The very latest Ensembl estimates (April 2017) for Homo sapiens and Mus musculus are similar. The difference in gene numbers between mouse and human is not significant according to the authors ...
The discrepancy in total number of annotated genes between the two species is unlikely to reflect differences in underlying biology, and can be attributed to the less advanced state of the mouse annotation.
This is correct but it doesn't explain the other numbers. There's general agreement on the number of protein-coding genes in mammals. They all have about 20,000 genes. There is no agreement on the number of genes for functional noncoding RNAs. In its latest build, Ensemble says there are 14,727 lncRNA genes, 5,362 genes for small noncoding RNAs, and 2,222 other genes for nocoding RNAs. The total number of non-protein-coding genes is 22,311.

There is no solid evidence to support this claim. It's true there are many transcripts resembling functional noncoding RNAs but claiming these identify true genes requires evidence that they have a biological function. It would be okay to call them "potential" genes or "possible" genes but the annotators are going beyond the data when they decide that these are actually genes.

Breschi et al. mention the number of transcripts. I don't know what method Ensembl uses to identify a functional transcript. Are these splice variants of protein-coding genes?

The rest of the review discusses the similarities between human and mouse genes. They point out, correctly, that about 16,000 protein-coding genes are orthologous. With respect to lncRNAs they discuss all the problems in comparing human and mouse lncRNA and conclude that "... the current catalogues of orthologous lncRNAs are still highly incomplete and inaccurate." There are several studies suggesting that only 1,000-2,000 lncRNAs are orthologous. Unfortunately, there's very little overlap between the two most comprehensive studies (189 lncRNAs in common).

There are two obvious possibilities. First, it's possible that these RNAs are just due to transcriptional noise and that's why the ones in the mouse and human genomes are different. Second, all these RNAs are functional but the genes have arisen separately in the two lineages. This means that about 10,000 genes for biologically functional lncRNAs have arisen in each of the genomes over the past 100 million years.

Breschi et al. don't discuss the first possibility.


Breschi, A., Gingeras, T.R., and Guigó, R. (2017) Comparative transcriptomics in human and mouse. Nature Reviews Genetics [doi: 10.1038/nrg.2017.19]

Genome size confusion

The July 2017 issue of Nature Reviews: Genetics contains an interesting review of a topic that greatly interest me.
Breschi, A., Gingeras, T. R., and Guigó, R. (2017). Comparative transcriptomics in human and mouse. Nature Reviews Genetics [doi: 10.1038/nrg.2017.19]

Cross-species comparisons of genomes, transcriptomes and gene regulation are now feasible at unprecedented resolution and throughput, enabling the comparison of human and mouse biology at the molecular level. Insights have been gained into the degree of conservation between human and mouse at the level of not only gene expression but also epigenetics and inter-individual variation. However, a number of limitations exist, including incomplete transcriptome characterization and difficulties in identifying orthologous phenotypes and cell types, which are beginning to be addressed by emerging technologies. Ultimately, these comparisons will help to identify the conditions under which the mouse is a suitable model of human physiology and disease, and optimize the use of animal models.
I was confused by the comments made by the authors when they started comparing the human and mouse genomes. They said,
The most recent genome assemblies (GRC38) include 3.1 Gb and 2.7 Gb for human and mouse respectively, with the mouse genome being 12% smaller than the human one.
I think this statement is misleading. The size of the human genome isn't known with precision but the best estimate is 3.2 Gb [How Big Is the Human Genome?]. The current "golden path length" according to Ensembl is 3,096,649,726 bp. [Human assembly and gene annotation]. It's not at all clear what this means and I've found it almost impossible to find out; however, I think it approximates the total amount of sequenced DNA in the latest assembly plus an estimate of the size of some of the gaps.

The golden path length for the mouse genome is 2,730,871,774 bp. [Mouse assembly and gene annotation]. As is the case with the human genome, this is NOT the genome size. Not as much mouse DNA sequence has been assembled into a contiguous and accurate assembly as is the case with humans. The total mouse sequence is at about the same stage the human genome assembly was a few years ago.

If you look at the mouse genome assembly data you see that 2,807,715,301 bp have been sequenced and there's 79,356,856 bp in gaps. That's 2.88 Gb which doesn't match the golden path length and doesn't match the past estimates of the mouse genome size.

We don't know the exact size of the mouse genome. It's likely to be similar to that of the human genome but it could be a bit larger or a bit smaller. The point is that it's confusing to say that the mouse genome is 12% smaller than the human one. What the authors could have said is that less of the mouse genome has been sequenced and assembled into accurate contigs.

If you go to the NCBI site for Homo sapiens you'll see that the size of the genome is 3.24 Gb. The comparable size for Mus musculus is 2.81 Gb. That 15% smaller than the human genome size. How accurate is that?

There's a problem here. With all this sequence information, and all kinds of other data, it's impossible to get an accurate scientific estimate of the total genome sizes.


[Image Credit: Wikipedia: Creative Commons Attribution 2.0 Generic license]

Tuesday, June 27, 2017

Debating alternative splicing (Part IV)

In Debating alternative splicing (Part III) I discussed a review published in the February 2017 issue of Trends in Biochemical Sciences. The review examined the data on detecting predicted protein isoforms and concluded that there was little evidence they existed.

My colleague at the University of Toronto, Ben Blencowe, is a forceful proponent of massive alternative splicing. He responded in a letter published in the June 2017 issue of Trends in Biochemical Sciences (Blencowe, 2017). It's worth looking at his letter in order to understand the position of alternative splicing proponents. He begins by saying,
It is estimated that approximately 95% of multiexonic human genes give rise to transcripts containing more than 100 000 distinct AS events [3,4]. The majority of these AS events display tissue-dependent variation and 10–30% are subject to pronounced cell, tissue, or condition-specific regulation [4].

Monday, June 26, 2017

Debating alternative splicing (Part III)

Proponents of massive alternative splicing argue that most human genes produce many different protein isoforms. According to these scientists, this means that humans can make about 100,000 different proteins from only ~20,000 protein-coding genes. They tend to believe humans are considerably more complex than other animals even though we have about the same number of genes. They think alternative splicing accounts for this complexity [see The Deflated Ego Problem].

Opponents (I am one) argue that most splice variants are due to splicing errors and most of those predicted protein isoforms don't exist. (We also argue that the differences between humans and other animals can be adequately explained by differential regulation of 20,000 protein-coding genes.) The controversy can only be resolved when proponents of massive alternative splicing provide evidence to support their claim that there are 100,000 functional proteins.

Saturday, June 24, 2017

Debating alternative splicing (part II)

Mammalian genomes are very large. It looks like 90% of it is junk DNA. These genomes are pervasively transcribed, meaning that almost 90% of the bases are complementary to a transcript produced at some time during development. I think most of those transcripts are due to inappropriate transcription initiation. They are mistakes in transcription. The genome is littered with transcription factor binding sites but only a small percentage are directly involved in regulating gene expression. The rest are due to spurious binding—a well-known property of DNA binding proteins. These conclusions are based, I believe, on a proper understanding of evolution and basic biochemistry.

If you add up all the known genes, they cover about 30% of the genome sequence. Most of this (>90%) is intron sequence and introns are mostly junk. The standard mammalian gene is transcribed to produce a precursor RNA that is subsequently processed by splicing out introns to produce a mature RNA. If it's a messenger RNA (mRNA) then it will be translated to produce a protein (technically, a polypeptide). So far, the vast majority of protein-coding genes produce a single protein but there are some classic cases of alternative splicing where a given gene produces several different protein isoforms, each of which has a specific function.

Friday, June 23, 2017

Debating alternative splicing (part I)

I recently had a chance to talk science with my old friend and colleague Jack Greenblatt. He has recently teamed up with some of my other colleagues at the University of Toronto to publish a paper on alternative splicing in mouse cells. Over the years I have had numerous discussions with these colleagues since they are proponents of massive alternative splicing in mammals. I think most splice variants are due to splicing errors.

There's always a problem with terminology whenever we get involved in this debate. My position is that it's easy to detect splice variants but they should be called "splice variants" until it has been firmly established that the variants have a biological function. This is not a distinction that's acceptable to proponents of massive alternative splicing. They use the term "alternative splicing" to refer to any set of processing variants regardless of whether they are splicing errors or real examples of regulation. This sometimes makes it difficult to have a discussion.

In fact, most of my colleagues seem reluctant to admit that some splice variants could be due to meaningless errors in splicing. Thus, they can't be pinned down when I ask them what percentage of variants are genuine examples of alternative splicing and what percentage are splicing mistakes. I usually ask them to pick out a specific gene, show me all the splice variants that have been detected, and explain which ones are functional and which ones aren't. I have a standing challenge to do this with any one of three sets of genes [A Challenge to Fans of Alternative Splicing].
  1. Human genes for the enzymes of glycolysis
  2. Human genes for the subunits of RNA polymerase with an emphasis on the large conserved subunits
  3. Human genes for ribosomal proteins
I realize that proponents of massive alternative splicing are not under any obligation to respond to my challenge but it sure would help if they did.

Thursday, June 22, 2017

Are most transcription factor binding sites functional?

The ongoing debate over junk DNA often revolves around data collected by ENCODE and others. The idea that most of our genome is transcribed (pervasive transcription) seems to indicate that genes occupy most of the genome. The opposing view is that most of these transcripts are accidental products of spurious transcription. We see the same opposing views when it comes to transcription factor binding sites. ENCODE and their supporters have mapped millions of binding sites throughout the genome and they believe this represent abundant and exquisite regulation. The opposing view is that most of these binding sites are spurious and non-functional.

The messy view is supported by many studies on the biophysical properties of transcription factor binding. These studies show that any DNA binding protein has a low affinity for random sequence DNA. They will also bind with much higher affinity to sequences that resemble, but do not precisely match, the specific binding site [How RNA Polymerase Binds to DNA; DNA Binding Proteins]. If you take a species with a large genome, like us, then a typical DNA protein binding site of 6 bp will be present, by chance alone, at 800,000 sites. Not all of those sites will be bound by the transcription factor in vivo because some of the DNA will be tightly wrapped up in dense chromatin domains. Nevertheless, an appreciable percentage of the genome will be available for binding so that typical ENCODE assays detect thousand of binding sites for each transcription factor.

This information appears in all the best textbooks and it used to be a standard part of undergraduate courses in molecular biology and biochemistry. As far as I can tell, the current generation of new biochemistry researchers wasn't taught this information.