Here's the editorial summary of the work ...
During the translation of a messenger RNA (mRNA) into protein, ribosomes can sometimes stall. Truncated proteins thus formed can be toxic to the cell and must be destroyed. Shen et al. show that the proteins Ltn1p and Rqc2p, subunits of the ribosome quality control complex, bind to the stalled and partially disassembled ribosome. Ltn1p, a ubiquitin ligase, binds near the nascent polypeptide exit tunnel on the ribosome, well placed to tag the truncated protein for destruction. The Rqc2p protein interacts with the transfer RNA binding sites on the partial ribosome and recruits alanine- and threonine-bearing tRNAs. Rqc2p then catalyzes the addition of these amino acids onto the unfinished protein, in the absence of both the fully assembled ribosome and mRNA. These so-called CAT tails may promote the heat shock response, which helps buffer against malformed proteinsThis is mildly interesting. We've known about ubiquitin ligase for decades but this is a different way of tagging proteins for destruction.
We'll have to see if this work stands up to verification but even if it does, it's not going to make it into the textbooks.
Let's see what the University of Utah Press Office has to say ...
Defying Textbook Science, Study Finds New Role for ProteinsMathew Cobb, writing on Jerry Coynes blog, explains why this isn't really a big deal [CAT tails weaken the central dogma – why it matters and why it doesn’t]. Let me just add that the synthesis of peptides with defined sequences in the absence of mRNA and ribosomes has been described in most textbooks since the 1980s. The best examples are the peptides involved in pepditogylcan synthesis (cell walls) and peptide antibiotics.
Open any introductory biology textbook and one of the first things you’ll learn is that our DNA spells out the instructions for making proteins, tiny machines that do much of the work in our body’s cells. Results from a study published on Jan. 2 in Science defy textbook science, showing for the first time that the building blocks of a protein, called amino acids, can be assembled without blueprints – DNA and an intermediate template called messenger RNA (mRNA). A team of researchers has observed a case in which another protein specifies which amino acids are added.
"This surprising discovery reflects how incomplete our understanding of biology is,” says first author Peter Shen, Ph.D., a postdoctoral fellow in biochemistry at the University of Utah. “Nature is capable of more than we realize." ...
Here's a figure from my book.
What this means is that the statement, "... showing for the first time that the building blocks of a protein, called amino acids, can be assembled without blueprints – DNA and an intermediate template called messenger RNA (mRNA)" is simply not true.
We really, really, need to do something about university press releases.
Shen, P.S., Park, J., Qin, Y., Li, X., Parsawar, K., Larson, M.H., Cox, J., Cheng, Y., Lambowitz, A.M., Weissman, J.S., Brandman, O., and Frost, A. Rqc2p and 60S ribosomal subunits mediate mRNA-independent elongation of nascent chains. Science 347:75-78. [doi: 10.1126/science.1259724 ]