Today's editorial cartoon in The Toronto Star is worth sharing. If Canadians were allowed to vote in the US Presidential elections, the McCain people would have waved the white flag months ago.

Furthermore, the analysis is backward looking – transposing last week's results onto a new system. In all likelihood, if Canada had a system of proportional representation, the outcome would be very different, given the demographical and geographical diversity of the country. The pro-life Christian Heritage Party, for example, might win enough votes to get seats. And new parties might emerge to win seats – say, an Alberta First party or even ethnic parties.This is scary. It looks like the editors of The Star are afraid of proportional voting because (horrors!) some people might elect MP's who truly represent their points of view.
So Harper might be kept in power by entering a coalition with pro-life and Alberta First parties. Now that, indeed, is a scary prospect.
1. It's possible that Bush descends from Beatrice Sinclair and not Elizabeth Stewart—the website is confusing. Even if this is an error there are several other connections.
Don't argue against him. Agree with him. Then ask a question like one of those below:Just in case you've forgotten, this is what passes as the best evidence for Intelligent Design Creationism. We should think up a name to describe these people.
1. I’d like to shut up those stupid IDers once and for all. Please tell me where I can find a book that shows clearly all the transitional fossil forms between fish and amphibians or reptiles and birds or some such major transition. I’d like to see it spelled out in detail with pictures and measurements and explanations of each fossil so I can crush those idiots.
2. I know that evolution is the most solidly proven theory in all of science, so please show me the mathematical proof of how random changes create information. I’m sure there must be one because this is a fundamental truth of evolution.
3. I know that in any system like life on earth that is open and receives outside energy the system will steadily grow more and more complex but I don’t really understand the physics of this. Could you explain it to me?
Yet the evidence cited in these textbooks falls far short of supporting those sweeping claims. To be sure, biochemical mutations lead to antibiotic and insecticide resistance, and human beings carrying the sickle-cell trait are more likely to survive malaria as infants. But only beneficial morphological mutations can provide the raw materials for morphological evolution, and evidence for such mutations is surprisingly thin. As we have seen, four-winged fruit flies do not provide the missing evidence, despite their current popularity.The experiment that was performed by Christiane Nüsslein-Volhard and Eric Wieschaus was designed to detect recessive lethal mutations that affected development. These kind of mutations are likely to identify genes that are essential for development. I described the experiment in a separate posting [Balancer Chromosomes].
If textbook-writers have no good examples of beneficial morphological mutations, it's not because biologists haven't been looking for them About the time that Lewis was studying Ultrabithorax, German geneticists Christiane Nüsslein-Volhard and Eric Wieschaus were using a technique called "saturation mutagenesis" to search for every possible mutation involved in fruit fly development. They discovered dozens of mutations that affect development at various stages and produce a variety of malformations. Their Herculean efforts earned them a Nobel prize (which they shared with Lewis), but they did not turn up a single morphological mutations that would benefit a fly in the wild. [my emphasis]
In 1979, Eric Wieschaus and I, at that time in the EMBL, Heidelberg, had developed the methods for the large scale screening for embryonic lethal mutations in Drosophila. The screening procedure focused on the segmented pattern of the larval epidermis (8). In this and subsequent screens, a number of new genes acting in the embryo and required for the formation of a morphologically normal larva were discovered (9-11).
[Photo Credit: Jonathan Wells from Conservapedia]
Welcome to the 116th edition of the Tangled Bank. As usually, we have a lot of good stuff for you all. Unlike some former hosts, I am not a very creative writer, and I'll spare you all from any attempts of making some kind of theme for this Tangled Bank. So, without any further ado, let's get to the posts.
Send an email message to host@tangledbank.net if you want to submit an article to Tangled Bank. Be sure to include the words "Tangled Bank" in the subject line. Remember that this carnival only accepts one submission per week from each blogger.
[Lower Figure credit: St Johnston (2002)]
St. Johnston, D. (2002) THE ART AND DESIGN OF
GENETIC SCREENS: DROSOPHILA MELANOGASTERNature Reviews: Genetics 3:178-188. [PDF]
"for their discoveries concerning the genetic control of early embryonic development"
Brave decision by two young scientists
Christiane Nüsslein-Volhard and Eric Wieschaus both finished their basic scientific training at the end of the seventies. They were offered their first independent research positions at the European Molecular Biology Laboratory (EMBL) in Heidelberg. They knew each other before they arrived in Heidelberg because of their common interest: they both wanted to find out how the newly fertilized Drosophila egg developed into a segmented embryo. The reason they chose the fruit fly is that embryonic development is very fast. Within 9 days from fertilization the egg develops into an embryo, then a larvae and then into a complete fly.Fig. 1 Regions of activity in the embryo for the genes belonging to the gap, pair-rule, and segment-polarity groups. The gap genes start to act in the very early embryo (A) to specify an initial segmentation (B). The pair-rule genes specify the 14 final segments (C) of the embryo under the influence of the gap genes. These segments later acquire a head-to-tail polarity due to the segment polarity genes.
They decided to join forces to identify the genes which control the early phase of this process. It was a brave decision by two young scientists at the beginning of their scientific careers. Nobody before had done anything similar and the chances of success were very uncertain. For one, the number of genes involved might be very great. But they got started. Their experimental strategy was unique and well planned. They treated flies with mutagenic substances so as to damage (mutate) approximately half of the Drosophila genes at random (saturation mutagenesis). They then studied genes which, if mutated would cause disturbances in the formation of a body axis or in the segmentation pattern. Using a microscope where two persons could simultaneously examine the same embryo they analyzed and classified a large number of malformations caused by mutations in genes controlling early embryonic development. For more than a year the two scientists sat opposite each other examining Drosophila embryos resulting from genetic crosses of mutant Drosophila strains. They were able to identify 15 different genes which, if mutated, would cause defects in segmentation. The genes could be classified with respect to the order in which they were important during development and how mutations affected segmentation. Gap genes (Fig 1) control the body plan along the head-tail axis. Loss of gap gene function results in a reduced number of body segments. Pair rule genes affect every second body segment: loss of a gene known as "even-skipped" results in an embryo consisting only of odd numbered segments. A third class of genes called segment polarity genes affect the head-to-tail polarity of individual segments.
The results of Nüsslein-Volhard and Wieschaus were first published in the English scientific journal Nature during the fall of 1980. They received a lot of attention among developmental biologists and for several reasons. The strategy used by the two young scientists was novel. It established that genes controlling development could be systematically identified. The number of genes involved was limited and they could be classified into specific functional groups. This encouraged a number of other scientists to look for developmental genes in other species. In a fairly short time it was possible to show that similar or identical genes existed also in higher organisms and in man. It has also been demonstrated that they perform similar functions during development.
[Photo Credits: Nüsslein-Volhard - Encylopaedia Britanica, © Patrick Piel/Gamma Liaison, Wieschaus -News at Princeton]
Conservatives - 38% of the popular vote: 117 seats (not 143)I don't favor such a system. I like the Mixed Member Proportional MMP) system based on provinces.
Liberals - 26% of the popular vote: 81 seats (not 76)
NDP - 18% of the popular vote: 57 seats (not 37)
Bloc - 10% of the popular vote: 28 seats (not 50)
Greens - 7% of the popular vote: 23 seats (not 0)
Hello Pal,
I hope my email fine you well. I am in need of your assistance. My name is Sgt. Jarvis Reeves. I am an American soldier serving in the 1st Armored Division in Iraq, we have just been posted out of Iraq and to return in a short while. My colleague and I need your help to transfer out the sum of Twenty Five Mllion U.S Dollars ($25 MUSD). If you are interested I will furnish you with more details
As awair your response.
Email:sgt.jr@hotmail.com
Yours,
Sgt. Jarvis Reeves
God Bless America!!
It has been shown that alignment quality can have greater impact on the final tree than does the tree-building method employed [20]. Therefore, preparing high quality sequence alignments is a most critical part of any molecular phylogenetic analysis. This preparation typically involves careful but tedious manual editing and trimming of the generated alignments, and thus remains the biggest challenge to automation. When scaling up this process, the trimming step is often simply ignored. Automated trimming based on the number of gaps in each column or each column's conservation score can be used to select conserved blocks, but still is not satisfactory when a high quality tree is required.Keep in mind that what is being proposed is a large tree based on concatenated sequences from many genes. You don't want to do multiple sequence alignments for every gene by hand, and yet up until now, that was the only way to get accurate results.
Wu, Martin, Eisen, Jonathan (2008). A simple, fast, and accurate method of phylogenomic inference Genome Biology, 9:R151 [Genome Biology] [doi:10.1186/gb-2008-9-10-r151]