ABO Blood Types (Feb. 21, 2007)Glycoproteins (Feb. 20, 2007)
Genetics of ABO Blood Types (Feb. 23, 2007)
Human ABO Gene (Feb. 22, 2007)
ABO Blood Types (Feb. 21, 2007)
The Nobel Prize in Physiology or Medicine 1947.
Carl Ferdinand Cori (1896-1984) and Gerty Theresa Cori (1896-1957) won the Nobel Prize in 1947 for their work on understanding the synthesis and degradation of glycogen. Their major contribution was understanding the importance of phosphorylated intermediates, especially the "Cori ester" glucose-1-phosphate [Monday's Molecule #25].Professor Carl Cori and Doctor Gerty Cori. During the past decade the scientific world has followed your work on glycogen and glucose metabolism with an interest that has gradually increased to admiration. Since the discovery of glycogen by Claude Bernard ninety years ago, we have been almost totally ignorant of how this important constituent of the body is formed and broken down. Your magnificent work has now elucidated in great detail the extremely complicated enzymatic mechanism involved in the reversible reactions between glucose and glycogen. Your synthesis of glycogen in the test tube is beyond doubt one of the most brilliant achievements in modern biochemistry. Your discovery of the hormonal regulation of the hexokinase reaction would seem to lead to a new conception of how hormones and enzymes cooperate.Cori and Cori are one of the few husband and wife teams to receive the Nobel Prize. They worked at Washington University in St. Louis, MO (USA).
In the name of the Caroline Institute I extend to you hearty congratulations on your outstanding contribution to biochemistry and physiology.
Glucose is stored as the intracellular polysaccharides starch and glycogen. Starch occurs mostly in plants. Glycogen is an important storage polysaccharide in bacteria, protists, fungi and animals. Glycogen is stored in large granules. In mammals, these granules are found in muscle and liver cells. In electron micrographs, liver glycogen appears as clusters of cytosolic granules with a diameter of 100 nm—much larger than ribosomes. The enzymes required for synthesis of glycogen are found in muscle and liver cells [Glycogen Synthesis]. Those same cells contain the enzymes for glycogen degradation. 
All cells are capable of making glucose. The pathways is called gluconeogenesis and the end product is not actually glucose but a phosphorylated intermediate called glucose-6-phosphate.
Glycogen consists of long chains of glucose molecules joined end-to-end through their carbon atoms at the 1 and 4 positions. The chains can have many branches. Completed chains can have up to 6000 glucose residues making glycogen one of the largest molecules in living cells.
Glucose-1-phosphate is the "Cori ester" [Monday's Molecule #25] that was discovered by Carl Cori and Gerty Cori while they were working out this pathway [Nobel Laureates: Carl Cori and Gerty Cori].
Glycogen synthesis is a polymerization reaction where glucose units in the form of UDP-glucose are added one at a time to a growing polysaccharide chain. The reaction is catalyzed by glycogen synthase.

Walther Hermann Nernst won the Nobel Prize in 1920 for his work in understanding the energy of reactions. The main work is summarized in the presentation speech,Before Nernst began his actual thermochemical work in 1906, the position was as follows. Through the law of the conservation of energy, the first fundamental law of the theory of heat, it was possible on the one hand to calculate the change in the evolution of heat with the temperature. This is due to the fact that this change is equal to the difference between the specific heats of the original and the newly-formed substances, that is to say, the amount of heat required to raise their temperature from 0° to 1° C. According to van't Hoff, one could on the other hand calculate the change in chemical equilibrium, and consequently the relationship with temperature, if one knew the point of equilibrium at one given temperature as well as the heat of reaction.Today, Nernst is known for his other contributions to thermodynamics. In biochemistry he is responsible for the Nernst equation that relates standard reduction potentials and Gibbs free energy.
The big problem, however, that of calculating the chemical affinity or the chemical equilibrium from thermochemical data, was still unsolved.
With the aid of his co-workers Nernst was able through extremely valuable experimental research to obtain a most remarkable result concerning the change in specific heats at low temperatures.
That is to say, it was shown that at relatively low temperatures specific heats begin to drop rapidly, and if extreme experimental measures such as freezing with liquid hydrogen are used to achieve temperatures approaching absolute zero, i.e. in the region of -273° C, they fall almost to zero.
This means that at these low temperatures the difference between the specific heats of various substances comes even closer to zero, and thus that the heat of reaction for solid and liquid substances practically becomes independent of temperature at very low temperatures.
where n is the number of electrons transferred and ℱ (F) is Faraday’s constant (96.48 kJ V-1 mol-1). ΔE°ʹ is defined as the difference in volts between the standard reduction potential of the electron-acceptor system and that of the electron-donor system. The Δ (delta) symbol indicates a change or a difference between two values.
You may recall that electrons tend to flow from half-reactions with a more negative standard reduction potential to those with a more positive one. For example, in the pyruvate dehydrogenase reaction electrons flow from pyruvate (E°' = -0.48 V) to NAD+ (E°' = -0.32 V). We can calculate the change in standard reduction potentials; it's equal to +0.16 V [-0.32 - (-0.48) = +0.16].
Just as the actual Gibbs free energy change for a reaction is related to the standard Gibbs free energy change by this equation, an observed difference in reduction potentials (ΔE) is related to the difference in the standard reduction potentials (ΔE°') by the Nernst equation.
For a reaction involving the oxidation and reduction of two molecules, A and B,
the Nernst equation is
where [Aox] is the concentration of oxidized A inside the cell. The Nernst equation tells us the actual difference in reduction potential (ΔE) and not the artificial standard change in reduction potential (ΔE°ʹ).
where Q represents the ratio of the actual concentrations of reduced and oxidized species. To calculate the electromotive force of a reaction under nonstandard conditions, use the Nernst equation and substitute the actual concentrations of reactants and products. Keep in mind that a positive E value indicates that an oxidation-reduction reaction will have a negative value for the standard Gibbs free energy change.
and
Since the NAD+ half-reaction has the more negative standard reduction potential, NADH is the electron donor and oxygen is the electron acceptor. The net reaction is
and the change in standard reduction potential is
Using the equations described above we get
What this tells us is that a great deal of energy can be released when electrons are passed from NADH to oxygen provided the conditions inside the cell resemble those for the standard reduction potentials (they do). The standard Gibbs free energy change for the formation of ATP from ADP + Pi is -32 kJ mol-1 (the actual free-energy change is greater under the conditions of the living cell, it's about -45 kJ mol-1). This strongly suggests that the energy released during the oxidation of NADH under cellular conditions is sufficient to drive the formation of several molecules of ATP. Actual measurements reveal that the oxidation of NADH can be connected to formation of 2.5 molecules of ATP giving us confidence that the theory behind oxidation-reduction reactions is sound.Then there's the problem on the other side -- among the atheists such as Richard Dawkins who have been labelled "fanatics." Now, it is absolutely true that Dawkins' tone is often as charming as fingernails dragged slowly down a chalkboard. But just what is the core of Dawkins' radical message?[Hat Tip: PZ Myers]
Well, it goes something like this: If you claim that something is true, I will examine the evidence which supports your claim; if you have no evidence, I will not accept that what you say is true and I will think you a foolish and gullible person for believing it so.
That's it. That's the whole, crazy, fanatical package.
When the Pope says that a few words and some hand-waving causes a cracker to transform into the flesh of a 2,000-year-old man, Dawkins and his fellow travellers say, well, prove it. It should be simple. Swab the Host and do a DNA analysis. If you don't, we will give your claim no more respect than we give to those who say they see the future in crystal balls or bend spoons with their minds or become werewolves at each full moon.
And for this, it is Dawkins, not the Pope, who is labelled the unreasonable fanatic on par with faith-saturated madmen who sacrifice children to an invisible spirit.
This is completely contrary to how we live the rest of our lives. We demand proof of even trivial claims ("John was the main creative force behind Sergeant Pepper") and we dismiss those who make such claims without proof. We are still more demanding when claims are made on matters that are at least temporarily important ("Saddam Hussein has weapons of mass destruction" being a notorious example).
So isn't it odd that when claims are made about matters as important as the nature of existence and our place in it we suddenly drop all expectation of proof and we respect those who make and believe claims without the slightest evidence? Why is it perfectly reasonable to roll my eyes when someone makes the bald assertion that Ringo was the greatest Beatle but it is "fundamentalist" and "fanatical" to say that, absent evidence, it is absurd to believe Muhammad was not lying or hallucinating when he claimed to have long chats with God?
None of the reactions of glycolysis result in the direct reduction of molecular oxygen. In all cases, the release of electrons when glucose is broken down to CO2 is coupled to temporary electron storage in various coenzymes. We have already encountered several of these electron storage molecules such as ubiquinone, FMN & FAD, and NADPH.
How do we know which direction electron are going to flow? For example, if ubiquinone is reduced to ubiquinol by acquiring two electrons then where do the electrons come from? Can NADH pass electrons to ubiquinone or does ubiquinol pass its two electrons to NAD+? And where does FAD+ fit? Can it receive electrons from NADH?
The direction of the current through the circuit in the figure indicates that Zn is more easily oxidized than Cu (i.e., Zn is a stronger reducing agent than Cu). The reading on the voltmeter represents a potential difference—the difference between the reduction potential of the reaction on the left and that on the right. The measured potential difference is the electromotive force.
The table below gives the standard reduction potentials at pH 7.0 (E̊́) of some important biological half-reactions. Electrons flow spontaneously from the more readily oxidized substance (the one with the more negative reduction potential) to the more readily reduced substance (the one with the more positive reduction potential). Therefore, more negative potentials are assigned to reaction systems that have a greater tendency to donate electrons (i.e., systems that tend to oxidize most easily). 
It's important to note the direction of all these reactions is written in the form of a reduction or gain of electrons. That's not important when it comes to determining the direction of electron flow. For example, note that the reduction of acetyl-CoA to pyruvate is at the top of the list (E̊́= -0.48 V). This is the reaction catalyzed by pyruvate dehydrogenase. Electrons released by the oxidation of pyruvate will flow to any half reaction that has a higher (less negative) standard reduction potential. In this case the electrons end up in NADH (E̊́ = -0.32 V).
When two atoms of hydrogen combine to form H2 both atoms succeed in filling their outer shells with two electron by sharing electrons. The shared pair of electrons is the covalent bond. The type of structures shown in the equation are called Lewis Structures. The dots represent electrons in the outer shell of the atom.
In this example, oxygen with six electrons in the valence shell is combining with two hydrogen atoms to form water (H2O). By sharing electrons both the hydrogen atoms and the oxygen atom will complete their outer shells of electrons—hydrogen with two electrons and oxygen with eight.
Carbon has an atomic number of 6, which means that it has two electrons in the inner shell and only four electrons in the outer shell. Carbon can combine with four other atoms to fill up its outer shell with eight electrons. This ability to combine with several different atoms is one of the reasons why carbon is such a versatile atom. The structure of ethanol (CH3CH2OH, left) illustrates this versatility. Note that each atom has a complete outer shell of electrons and that each carbon atom is covalently bonded to four other atoms.
The outline of the enzyme is shown in blue. One of the key concepts in biochemistry is that enzymes speed up reactions, in part, by supplying and storing electrons. In this case an electron withdrawing group (X) pulls electrons from oxygen and this weakens the carbon-oxygen double bond (keto group). Carbon #2, in turn, pulls an electron from carbon #3 weakening the C3-C4 bond that will be broken. (Aldolase cleaves a six-carbon compound into two three-carbon compounds as shown here. It also preforms the reverse reaction where two three-carbon compounds are combined to form a six-carbon compound.)WASHINGTON - An odd-looking Canadian quarter with a bright red flower was the culprit behind a false espionage warning from the Defense Department about mysterious coins with radio frequency transmitters, The Associated Press has learned.I can see why the contractors were confused. American coins and paper money are so boring they probably thought every country had boring money.
ADVERTISEMENT
The harmless "poppy quarter" was so unfamiliar to suspicious U.S. Army contractors traveling in Canada that they filed confidential espionage accounts about them. The worried contractors described the coins as "filled with something man-made that looked like nano-technology," according to once-classified U.S. government reports and e-mails obtained by the AP.
This is a series of postings that describe the Three Domain Hypothesis. The Three Domain Hypothesis is the idea that life is divided into three domains—bacteria, archaebacteria, and eukaryotes—and that the archaebacteria and eukaryotes share a common ancestor. An example of this tree of life is shown on the Dept. of Energy (USA) Joint Genome Initiative website [JGI Microbial Genomes] (left).
Name this molecule. We need the exact name since it's pretty easy to guess one of the trivial names.
Mike Lake is the Canadian member of parliament for Edmonton-Mill Woods-Beaumont. He belongs to the Conservative Party of Stephen Harper.