More Recent Comments

Showing posts with label Junk DNA. Show all posts
Showing posts with label Junk DNA. Show all posts

Saturday, November 05, 2022

Nature journalist is confused about noncoding RNAs and junk

Nature Methods is one of the journals in Nature Portfolio published by Springer Nature. Its focus is novel methods in the life sciences.

The latest issue (October, 2022) highlights the issues with identifying functional noncoding RNAs and the editorial, Decoding noncoding RNAs, is quite good—much better than the comments in other journals. Here's the final paragraph.

Despite the increasing prominence of ncRNA, we remind readers that the presence of a ncRNA molecule does not always imply functionality. It is also possible that these transcripts are non-functional or products from, for example, splicing errors. We hope this Focus issue will provide researchers with practical advice for deciphering ncRNA’s roles in biological processes.

However, this praise is mitigated by the appearance of another article in the same journal. Science journalist, Vivien Marx has written a commentary with a title that was bound to catch my eye: How noncoding RNAs began to leave the junkyard. Here's the opening paragraph.

Junk. In the view of some, that’s what noncoding RNAs (ncRNAs) are — genes that are transcribed but not translated into proteins. With one of his ncRNA papers, University of Queensland researcher Tim Mercer recalls that two reviewers said, “this is good” and the third said, “this is all junk; noncoding RNAs aren’t functional.” Debates over ncRNAs, in Mercer’s view, have generally moved from ‘it’s all junk’ to ‘which ones are functional?’ and ‘what are they doing?’

This is the classic setup for a paradigm shaft. What you do is create a false history of a field and then reveal how your ground-breaking work has shattered the long-standing paradigm. In this case, the false history is that the standard view among scientists was that ALL noncoding RNAs were junk. That's nonsense. It means that these old scientists must have dismissed ribosomal RNA and tRNA back in the 1960s. But even if you grant that those were exceptions, it means that they knew nothing about Sidney Altman's work on RNAse P (Nobel Prize, 1989), or 7SL RNA (Alu elements), or the RNA components of spliceosomes (snRNAs), or PiWiRNAs, or snoRNAs, or microRNAs, or a host of regulatory RNAs that have been known for decades.

Knowledgeable scientists knew full well that there are many functional noncoding RNAS and that includes some that are called lncRNAs. As the editorial says, these knowledgeable scientists are warning about attributing function to all transcripts without evidence. In other words, many of the transcripts found in human cells could be junk RNA in spite of the fact that there are also many functional nonciding RNAs.

So, Tim Mercer is correct, the debate is over which ncRNAs are functional and that's the same debate that's been going on for 50 years. Move along folks, nothing to see here.

The author isn't going to let this go. She decides to interview John Mattick, of all people, to get a "proper" perspective on the field. (Tim Mercer is a former student of Mattick's.) Unfortunately, that perspective contains no information on how many functional ncRNAs are present and on what percentage of the genome their genes occupy. It's gonna take several hundred thousand lncRNA genes to make a significant impact on the amount of junk DNA but nobody wants to say that. With John Mattick you get a twofer: a false history (paradigm strawman) plus no evidence that your discoveries are truly revolutionary.

Nature Methods should be ashamed, not for presenting the views of John Mattick—that's perfectly legitimate—but for not putting them in context and presenting the other side of the controversy. Surely at this point in time (2022) we should all know that Mattick's views are on the fringe and most transcripts really are junk RNA?


Monday, September 05, 2022

The 10th anniversary of the ENCODE publicity campaign fiasco

On Sept. 5, 2012 ENCODE researchers, in collaboration with the science journal Nature, launched a massive publicity campaign to convince the world that junk DNA was dead. We are still dealing with the fallout from that disaster.

The Encyclopedia of DNA Elements (ENCODE) was originally set up to discover all of the functional elements in the human genome. They carried out a massive number of experiments involving a huge group of researchers from many different countries. The results of this work were published in a series of papers in the September 6th, 2012 issue of Nature. (The papers appeared on Sept. 5th.)

Sunday, September 04, 2022

Wikipedia: the ENCODE article

The ENCODE article on Wikipedia is a pretty good example of how to write a science article. Unfortunately, there are a few issues that will be very difficult to fix.

When Wikipedia was formed twenty years ago, there were many people who were skeptical about the concept of a free crowdsourced encyclopedia. Most people understood that a reliable source of information was needed for the internet because the traditional encyclopedias were too expensive, but could it be done by relying on volunteers to write articles that could be trusted?

The answer is mostly “yes” although that comes with some qualifications. Many science articles are not good; they contain inaccurate and misleading information and often don’t represent the scientific consensus. They also tend to be disjointed and unreadable. On the other hand, many non-science articles are at least as good, and often better, than anything in the traditional encyclopedias (eg. Battle of Waterloo; Toronto, Ontario; The Beach Boys).

By 2008, Wikipedia had expanded enormously and the quality of articles was being compared favorably to those of Encyclopedia Britannica, which had been forced to go online to compete. However, this comparison is a bit unfair since it downplays science articles.

Monday, August 29, 2022

The creationist view of junk DNA

Here's a recent video podcast (Aug. 23, 1022) from the Institute for Creation Research (sic). It features an interview with Dr. Jeff Tomkins of the ICR where he explains the history of junk DNA and why scientists no longer believe in junk DNA.

Most Sandwalk readers will recognize all the lies and distortions but here's the problem: I suspect that the majority of biologists would pretty much agree with the creationist interpretation. They also believe that junk DNA has been refuted and most of our genome is functional.

That's very sad.


Wednesday, August 24, 2022

Junk DNA vs noncoding DNA

The Wikipedia article on the Human genome contained a reference that I had not seen before.

"Finally DNA that is deleterious to the organism and is under negative selective pressure is called garbage DNA.[43]"

Reference 43 is a chapter in a book.

Pena S.D. (2021) "An Overview of the Human Genome: Coding DNA and Non-Coding DNA". In Haddad LA (ed.). Human Genome Structure, Function and Clinical Considerations. Cham: Springer Nature. pp. 5–7. ISBN 978-3-03-073151-9.

Sérgio Danilo Junho Pena is a human geneticist and professor in the Dept. of Biochemistry and Immunology at the Federal University of Minas Gerais in Belo Horizonte, Brazil. He is a member of the Human Genome Organization council. If you click on the Wikipedia link, it takes you to an excerpt from the book where S.D.J. Pena discusses "Coding and Non-coding DNA."

There are two quotations from that chapter that caught my eye. The first one is,

"Less than 2% of the human genome corresponds to protein-coding genes. The functional role of the remaining 98%, apart from repetitive sequences (constitutive heterochromatin) that appear to have a structural role in the chromosome, is a matter of controversy. Evolutionary evidence suggests that this noncoding DNA has no function—hence the common name of 'junk DNA.'"

Professor Pena then goes on to discuss the ENCODE results pointing out that there are many scientists who disagree with the conclusion that 80% of our genome is functional. He then says,

"Many evolutionary biologists have stuck to their guns in defense of the traditional and evolutionary view that non-coding DNA is 'junk DNA.'"

This is immediately followed by a quote from Dan Graur, implying that he (Graur) is one of the evolutionary biologists who defend the evolutionary view that noncoding DNA is junk.

I'm very interested in tracking down the reason for equating noncoding DNA and junk DNA, especially in contexts where the claim is obviously wrong. So I wrote to Professor Pena—he got his Ph.D. in Canada—and asked him for a primary source that supports the claim that "evolutionary science suggests that this noncoding DNA has no function."

He was kind enough to reply saying that there are multiple sources and he sent me links to two of them. Here's the first one.

I explained that this was somewhat ironic since I had written most of the Wikipedia article on Non-coding DNA and my goal was to refute the idea than noncoding DNA and junk DNA were synonyms. I explained that under the section on 'junk DNA' he would see the following statement that I inserted after writing sections on all those functional noncoding DNA elements.

"Junk DNA is often confused with non-coding DNA[48] but, as documented above, there are substantial fractions of non-coding DNA that have well-defined functions such as regulation, non-coding genes, origins of replication, telomeres, centromeres, and chromatin organizing sites (SARs)."

That's intended to dispel the notion that proponents of junk DNA ever equated noncoding DNA and junk DNA. I suggested that he couldn't use that source as support for his statement.

Here's my response to his second source.

The second reference is to a 2007 article by Wojciech Makalowski,1 a prominent opponent of junk DNA. He says, "In 1972 the late geneticist Susumu Ohno coined the term "junk DNA" to describe all noncoding sections of a genome" but that is a demonstrably false statement in two respects.

First, Ohno did not coin the term "junk DNA" - it was commonly used in discussions about genomes and even appeared in print many years before Ohno's paper. Second, Ohno specifically addresses regulatory sequences in his paper so it's clear that he knew about functional noncoding DNA that was not junk. He also mentions centromeres and I think it's safe to assume that he knew about ribosomal RNA genes and tRNA genes.

The only possible conclusion is that Makalowski is wrong on two counts.

I then asked about the second statement in Professor Pena's article and suggested that it might have been much better to say, "Many evolutionary biologists have stuck to their guns and defend the view that most of human genome is junk." He agreed.

So, what have we learned? Professor Pena is a well-respected scientist and an expert on the human genome. He is on the council of the Human Genome Organization. Yet, he propagated the common myth that noncoding DNA is junk and saw nothing wrong with Makalowski's false reference to Susumu Ohno. Professor Pena himself must be well aware of functional noncoding elements such as regulatory sequences and noncoding genes so it's difficult explain why he would imagine that prominant defenders of junk DNA don't know this.

I think the explanation is that this connection between noncoding DNA and junk DNA is so entrenched in the popular and scientific literature that it is just repeated as a meme without ever considering whether it makes sense.


1. The pdf appears to be a response to a query in Scientific American on February 12, 2007. It may be connected to a Scientific American paper by Khajavinia and Makalowski (2007).

Khajavinia, A., and Makalowski, W. (2007) What is" junk" DNA, and what is it worth? Scientific American, 296:104. [PubMed]

Friday, August 12, 2022

The surprising (?) conservation of noncoding DNA

We've known for more than half-a-century that a lot of noncoding DNA is functional. Why are some people still surprised? It's a puzzlement.

A paper in Trends in Genetics caught my eye as I was looking for somethng else. The authors review the various functions of noncoding DNA such as regulatory sequences and noncoding genes. There's nothing wrong with that but the context is a bit shocking for a paper that was published in 2021 in a highly respected journal.

Leypold, N.A. and Speicher, M.R. (2021) Evolutionary conservation in noncoding genomic regions. TRENDS in Genetics 37:903-918. [doi: 10.1016/j.tig.2021.06.007]

Humans may share more genomic commonalities with other species than previously thought. According to current estimates, ~5% of the human genome is functionally constrained, which is a much larger fraction than the ~1.5% occupied by annotated protein-coding genes. Hence, ~3.5% of the human genome comprises likely functional conserved noncoding elements (CNEs) preserved among organisms, whose common ancestors existed throughout hundreds of millions of years of evolution. As whole-genome sequencing emerges as a standard procedure in genetic analyses, interpretation of variations in CNEs, including the elucidation of mechanistic and functional roles, becomes a necessity. Here, we discuss the phenomenon of noncoding conservation via four dimensions (sequence, regulatory conservation, spatiotemporal expression, and structure) and the potential significance of CNEs in phenotype variation and disease.

Saturday, July 30, 2022

Wikipedia blocks any mention of junk DNA in the "Human genome" article

Wikipedia has an article on the Human genome. The introduction includes the following statement,

Human genomes include both protein-coding DNA genes and various types of DNA that does not encode proteins. The latter is a diverse category that includes DNA coding for non-translated RNA, such as that for ribosomal RNA, transfer RNA, ribozymes, small nuclear RNAs, and several types of regulatory RNAs. It also includes promoters and their associated gene-regulatory elements, DNA playing structural and replicatory roles, such as scaffolding regions, telomeres, centromeres, and origins of replication, plus large numbers of transposable elements, inserted viral DNA, non-functional pseudogenes and simple, highly-repetitive sequences.

This is a recent improvement (July 22, 2022) over the original statement that simply said, "Human genomes include both protein-coding DNA genes and noncoding DNA." I noted in the "talk" section" that there was no mention of junk DNA in the entire article on the human genome so I added a sentence to the end of the section quoted above. I said,

Some non-coding DNA is junk, such as pseudogenes, but there is no firm consensus over the total mount of junk DNA.1

Thursday, June 23, 2022

The Function Wars Part X: "Spam DNA"?

The authors of a recent paper think we need a new term "spam DNA" to describe some features of the human genome.

Fagundes, N.J., Bisso-Machado, R., Figueiredo, P.I., Varal, M. and Zani, A.L. (2022) What We Talk About When We Talk About “Junk DNA”. Genome Biology and Evolution 14:evac055. [doi: 10.1093/gbe/evac055]

“Junk DNA” is a popular yet controversial concept that states that organisms carry in their genomes DNA that has no positive impact on their fitness. Nonetheless, biochemical functions have been identified for an increasing fraction of DNA elements traditionally seen as “Junk DNA”. These findings have been interpreted as fundamentally undermining the “Junk DNA” concept. Here, we reinforce previous arguments that this interpretation relies on an inadequate concept of biological function that does not consider the selected effect of a given genomic structure, which is central to the “Junk DNA” concept. Next, we suggest that another (though ignored) confounding factor is that the discussion about biological functions includes two different dimensions: a horizontal, ecological dimension that reflects how a given genomic element affects fitness in a specific time, and a vertical, temporal dimension that reflects how a given genomic element persisted along time. We suggest that “Junk DNA” should be used exclusively relative to the horizontal dimension, while for the vertical dimension, we propose a new term, “Spam DNA”, that reflects the fact that a given genomic element may persist in the genome even if not selected for on their origin. Importantly, these concepts are complementary. An element can be both “Spam DNA” and “Junk DNA”, and “Spam DNA” can also be recruited to perform evolved biological functions, as illustrated in processes of exaptation or constructive neutral evolution.

The authors are scientists at the Federal Univesity of Rio Grande do Sul in Brazil. They are concerened about the origins of junk DNA and whether true selected effect functions (strong selected effect = SSE) conflict with the definition of junk DNA. Here's how they put it,

Paradoxically as it may seem, under the SSE definition, elements that contribute positively to fitness and are maintained by purifying selection would still count as “junk” only because they did not originate as an adaptation.

This is essentially correct according to how many philosophers define selected effect functions but that issue was resolved by focusing on purifying selection as the important criterion and ignoring the history of the trait (= maintenance function, MF). There is only a 'paradox' if you stick to the philosophy definition of function (i.e. SSE) and even then, the paradox only exists if the SSE definition is the only way to identify junk DNA. [see: The Function Wars Part IX: Stefan Linquist on Causal Role vs Selected Effect] The authors recognize this since they include a good discussion of this other definition (MF) and its advantages. Nevertheless, they propose a new term called "spam DNA" to help clarify the problem.

"Spam DNA" represents every genomic element which has not been selected for during its origin in the genome, even if it currently participates in relevant biological functions.

All of the DNA in the light blue box is spam DNA. Note that it includes DNA that is currently functional as long as it originated from junk DNA as they define it. Also, some junk DNA isn't spam DNA as long as it arose from the inactivation of DNA that used to have a function. Thus, pseudogenes aren't junk and neither are bits and pieces of transposons.

This isn't helpful. The current debate is about how much of our genome is junk so who cares about the history of individual sequences? A significant amount of what we currently define as junk DNA may have come from once-active transposons but we may never be able to trace the history of each piece of junk DNA. Does it fall into the first category in the figure (functional to junk) or is it spam DNA? Is this really important? No,it is not.

Function Wars
(My personal view of the meaning of function is described at the end of Part V.)

Wednesday, June 22, 2022

The Function Wars Part IX: Stefan Linquist on Causal Role vs Selected Effect

How much of the human genome is functional? This a problem that will be solved by biochemists not epistemologists.

What is junk DNA? What is functional DNA? Defining your terms is a key part of any scientific controversy because you can't have a debate if you can't agree on what you are debating. We've been debating the prevalence of junk DNA for more than 50 years and much of that debate has been (deliberately?) muddled by one side or the other in order to score points. For example, how many times have you heard the ridiculous claim that all noncoding DNA was supposed to be junk DNA? And how many times have you heard that all transcripts must have a function merely because they exist?

Tuesday, June 14, 2022

Distrust simplicity (and turn off your irony meters)

I just stumbled upon an opinion piece published in EMBO Reports on May 22, 2022. The author is Frank Gannon who is identified as the former Director of the QIMR Berghofer Medical Research Institute in Brisbane, Australia and the title of the article is "Seek simplicity and distrust it."

I'm about to quote some excerpts from the article but before doing so I need to warn you to run off your irony meters—even if you have the latest version with the most recent software updates.

Gannon's main point is that scientists should seek simple explanations but they must be willing to abandon them when better data comes along. He gives us some examples.

However, it seems that there is a collective amnesia among scientists such that we forget to distrust the simplicity that we pursue on our path to insight. The central dogma of molecular biology—that information flows unidirectionally from DNA to RNA to protein—was overturned, at least in part, with the discovery that this linear cascade could be reversed by reverse transcription.

Really? The Central Dogma of Molecular Biology was overturned, "at least in part," by reverse transcriptase? (It wasn't.) If you are going to write about a topic like this then you'd better make sure you know what you're talking about.

The great quote from Jacques Monod “What is true for E. coli is true for the elephant”, held valid only until the discovery of introns in eukaryotes. As I was close to the earliest data that pointed to the existence of split genes, I am well aware of the incredulity of biologists when they realised that genetic material did not have the same simple design irrespective of the organism.

Monod's statement was never supposed to be taken as literally as that.1 He was referring to the unity of biochemistry (Friedman, 2004). This is clear from what he says in Chance and Necessity, "Today we know that from the bacterium to man the chemical machinery is essentially the same, in both its structure and functioning." He meant that all species have DNA, RNA, and protein and that these molecules carry out the same roles in humans as they do in bacteria. The essence of this simple observation is as true today as it was 50 years ago.

The death of “Junk DNA”—a term, coined in 1972 by Susumu Ohno for the non-coding parts of the genome—has been more gradual. The perception that exons are the only useful part of the genome has been proven wrong with the discoveries of noncoding RNA, the controlling roles of intra-genomic areas, the essential interactions between distant genomic regions and peptides encoded by short open frame regions.

Did you turn off your irony meter? Don't say I didn't warn you. Jacques Monod (and Susumu Ohno) would be surprised to learn that in 1972 they knew nothing about noncoding genes and regulatory sequences.

More seriously, how did we ever get to the stage where a prominent scientist who frequently publishes opinion pieces in EMBO Reports could be so ignorant of the junk DNA controversy after all that's been written about it in the past ten years?



1. Besides, introns exist in bacteria.

Friedman, H.C. (2004) From Butyribacterium to E. coli: An Essay on Unity in Biochemistry. Perspectives in Biology and Medicine 47:47-66. [doi: 10.1353/pbm.2004.0007]

Monday, June 13, 2022

Manolis Kellis dismisses junk DNA

Manolis Kellis is a professor of computer science at the Massachusetts Institute of Technology (MIT). Sandwalk readers will remember him as one of the ENCODE leaders who participated in the massive publicity campaign of 2012 where they attempted to prove that most of the human genme is functional, not junk. He is the lead author of the semi-retraction that was published eighteen months later. [What did the ENCODE Consortium say in 2012 and 2014?]

Kellis was interviewed in April 2022 and it's interesting to hear his current views on junk DNA especially since MIT has just been rated the top university in the world for the 11th straight year. [QS ranks MIT the world’s No. 1 university for 2022-23].

His response to a question about junk DNA begins at 58 minutes. Kellis makes three points.

  • He doesn't like the word "junk."
  • Lots of noncoding DNA has known functions such as noncoding genes and regulatory sequences.
  • Half of our genome consists of transposon sequences and their regulatory regions fueled the mammalian radiation following the asteroid impact so that modern mammalian genomes now contain a complex and sophisticated network of regulatory sequences.

As I suspected, Kellis still doesn't recognize any of the evidence for junk DNA that was briefly outlined in the Kellis et al. (2014) paper. I find it surprising that after a decade of being exposed to criticism of his stance on junk DNA he is still not capable of presenting a cogent argument against junk.


Kellis, M. et al. (2014) Defining functional DNA elements in the human genome. Proc. Natl. Acad. Sci. (USA) April 24, 2014 published online [doi: 10.1073/pnas.1318948111]

Saturday, May 14, 2022

Editing the Wikipedia article on non-coding DNA

I decided to edit the Wikipedia article on non-coding DNA by adding new sections on "Noncoding genes," "Promoters and regulatory sequences," "Centromeres," and "Origins of replication." That didn't go over very well with the Wikipedia police so they deleted the sections on "Noncoding genes" and "Origins of replication." (I'm trying to restore them so you may see them come back when you check the link.)

I also decided to re-write the introduction to make it more accurate but my version has been deleted three times in favor of the original version you see now on the website. I have been threatened with being reported to Wikipedia for disruptive edits.

The introduction has been restored to the version that talks about the ENCODE project and references Nessa Carey's book. I tried to move that paragraph to the section on the ENCODE project and I deleted the reference to Carey's book on the grounds that it is not scientifically accurate [see Nessa Carey doesn't understand junk DNA]. The Wikipedia police have restored the original version three times without explaining why they think we should mention the ENCODE results in the introduction to an article on non-coding DNA and without explaining why Nessa Carey's book needs to be referenced.

The group that's objecting includes Ramos1990, Qzd, and Trappist the monk. (I am Genome42.) They seem to be part of a group that is opposed to junk DNA and resists the creation of a separate article for junk DNA. They want junk DNA to be part of the article on non-coding DNA for reasons that they don't/won't explain.

The main problem is the confusion between "noncoding DNA" and "junk DNA." Some parts of the article are reasonably balanced but other parts imply that any function found in noncoding DNA is a blow against junk DNA. The best way to solve this problem is to have two separate articles; one on noncoding DNA and it's functions and another on junk DNA. There has been a lot of resistance to this among the current editors and I can only assume that this is because they don't see the distinction. I tried to explain it in the discussion thread on splitting by pointing out that we don't talk about non-regulatory DNA, non-centromeric DNA, non-telomeric DNA, or non-origin DNA and there's no confusion about the distinction between these parts of the genome and junk DNA. So why do we single out noncoding DNA and get confused?

It looks like it's going to be a challenge to fix the current Wikipedia page(s) and even more of a challenge to get a separate entry for junk DNA.

Here is the warning that I have received from Ramos1990.

Your recent editing history shows that you are currently engaged in an edit war; that means that you are repeatedly changing content back to how you think it should be, when you have seen that other editors disagree. To resolve the content dispute, please do not revert or change the edits of others when you are reverted. Instead of reverting, please use the talk page to work toward making a version that represents consensus among editors. The best practice at this stage is to discuss, not edit-war. See the bold, revert, discuss cycle for how this is done. If discussions reach an impasse, you can then post a request for help at a relevant noticeboard or seek dispute resolution. In some cases, you may wish to request temporary page protection.

Being involved in an edit war can result in you being blocked from editing—especially if you violate the three-revert rule, which states that an editor must not perform more than three reverts on a single page within a 24-hour period. Undoing another editor's work—whether in whole or in part, whether involving the same or different material each time—counts as a revert. Also keep in mind that while violating the three-revert rule often leads to a block, you can still be blocked for edit warring—even if you do not violate the three-revert rule—should your behavior indicate that you intend to continue reverting repeatedly.

I guess that's very clear. You can't correct content to the way you think it should be as long as other editors disagree. I explained the reason for all my changes in the "history" but none of the other editors have bothered to explain why they reverted to the old version. Strange.


Friday, April 01, 2022

Illuminating dark matter in human DNA?

A few months ago, the press office of the University of California at San Diego issued a press release with a provocative title ...

Illuminating Dark Matter in Human DNA - Unprecedented Atlas of the "Book of Life"

The press release was posted on several prominent science websites and Facebook groups. According to the press release, much of the human genome remains mysterious (dark matter) even 20 years after it was sequenced. According to the senior author of the paper, Bing Ren, we still don't understand how genes are expressed and how they might go awry in genetic diseases. He says,

A major reason is that the majority of the human DNA sequence, more than 98 percent, is non-protein-coding, and we do not yet have a genetic code book to unlock the information embedded in these sequences.

We've heard that story before and it's getting very boring. We know that 90% of our genome is junk, about 1% encodes proteins, and another 9% contains lots of functional DNA sequences, including regulatory elements. We've known about regulatory elements for more than 50 years so there's nothing mysterious about that component of noncoding DNA.

Wednesday, March 30, 2022

John Mattick's new book

John Mattick and Paulo Amaral have written a book that promotes their views on the content of the human genome. It will be available next August. Their main thesis is that the human genome is full of genes for regulatory RNAs and there's very little junk. A secondary theme is that some very smart scientists have been totally wrong about molecular biology and molecular evolution for the past fifty years.

I pretty much know what's going to be in the book [see John Mattick presents his view of genomes]. I also know that most of his claims don't stand up to close scrutiny but that's not going to prevent it from being touted as a true paradigm shift. (It's actually a paradigm shaft.) I suspect it's going to get favorable reviews in Science and Nature.

John Mattick presents his view of genomes

John Mattick has a new book coming out in August where he defends the notion that most of our genome is full of genes for functonal noncoding RNAs. We have a pretty good idea what he's going to say. This is a talk he gave at Oxford on May 17, 2019.

Here are a few statements that should pique your interest.

  • (0:57) He says that his upcoming book is tentatively titled "the misunderstandings of molecular biology."
  • (1:11) He says that "the assumption has been very deeply embedded from the time of the lac operon on that genes equated to proteins."
  • (2:30) There have been three "surprises" in molecuular biology: (1) introns, (2) eukaryotic genomes are full of 'selfish' DNA, and (3) "gene number does not scale with developmental complexity."
  • (4:30) It is an unjustified assumption to assume that transposon-related seqences are junk and that leads to misinterpretation of neutral evolution.
  • (6:00) The view that evolution of regulatory sequences is mostly responsible for developmental complexity (Evo-Devo) has never been justified.
  • (8:45) A lot of obtuse theoretical discussion about how the number of regulatory protein-coding genes increases quadratically as the total number of protein-coding genes increase in a bacterial genome but at some point there has to be more protein-coding regulatory genes than total protein-coding genes so that limits the evolution of bacteria.
  • (13:40) The proportion of noncoding DNA increases with developmental complexity, topping out at humans.
  • (14:00) The vast majority of the genome in complex organisms is differentially transcribed in different cells and different tissues.
  • (14:15) The whole genome is alive on both strands.
  • (14:20) There are two possibilities: junk RNA or abundant functional transcripts and that explains complex organisms.
  • Mattick then takes several minutes to document the fact that there are abundant transcripts— a fact that has been known for the better part of sixty years but he does not mention that. All of his statements carry the implicit assumption that these transcripts are functional.
  • (20:20) He makes the boring, and largely irelevant, point that most disease-associated loci are located in noncoding regions (GWAS). He's responding to a critic who asked why, if these things (transcripts) are real, don't we see genetic evidence of it.
  • (24:00) Noncoding RNAs have all of the characteristics of functional RNAs with an emphasis on the fact that their expression is often only detected in specific cell types.
  • (31:50) It has now been shown that everything that protein transcription factors can do can be done by noncoding RNA.
  • (32:15) "I want to say to you that conservation is totally misunderstood." Apparently, lack of conservation imputes nothing about function.
  • (41:00) RNAs control phase separation. There's a whole other level of cell organization that we never dreamed of. (Ironically, he gives nucleoli as an example of something we never dreamed of.)
  • (42:36) "This is called soft metaphysics, and it's just come into biology, and it's spectacular in its implications."
  • (46:25) Almost every lncRNA is alternatively spliced in mice and humans.
  • (46:30) There's more alternative splicing in human protein-coding genes than in mice protein-coding genes but the extra splicing in humans is mostly in the 5' untranslated region. (I'm sure it has nothing to do with the fact that tons more RNA-Seq experiments have been done on human tissues.) "We think this is due to the increased sophistication of the regulation of these genes for the evolution of cognition."
  • (48:00) At least 20% of the human genome is evolutionarily conserved at the level of RNA structure and this does not require any assumptions.
  • (55:00) The talk ends at 55 minutes. That's too bad because I'm sure Mattick had a dozen more slides explaining why all of those transcripts are functional, as opposed to the few selected examples he picked. I'm sure he also had a lot of data refuting all of the evidence in favor of junk DNA but he just ran out of time.

I don't know if there were questions but, if there were, I bet that none of them challenged Mattick's main thesis.


Wednesday, November 03, 2021

What's in your genome?: 2021

This is an updated version of what's in your genome based on the latest data. The simple version is ...

about 90% of your genome is junk

Tuesday, October 19, 2021

Society for Molecular Biology and Evolution (SMBE) spreads misinformation about junk DNA

The Society for Molecular Biology and Evolution (SMBE) is a pretigious society of workers in the field of molecular evolution. I am a member and I have attended many of their conferences. SMBE sponsors several journals incucluding Genome Biology and Evolution (GBE), which is published by Oxford Academic Press.

The latest issue of GBE has a paper by Stitz et al. (2021) that describes some repetitive elements in the platyhelminth Schistosoma mansoni. The authors conlcude that some of these elements might have a function and this prompts them to begin their discussion with the following sentences.

The days of “junk DNA” are over. When the senior authors of this article studied genetics at their respective universities, the common doctrine was that the nonprotein coding part of eukaryotic genomes consists of interspersed, “useless” sequences, often organized in repetitive elements such as satDNA. The latter might have accumulated during evolution, for example, as a consequence of gene duplication events to separate and individualize gene function (Britten and Kohne 1968; Comings 1972; Ohno 1999). This view has fundamentally changed (Biscotti, Canapa, et al. 2015), and our study is the first one addressing this issue with structural, functional, and evolutionary aspects for the genome of a multicellular parasite.

It is unfortunate that the senior authors didn't receive a good undergraduate education but one might think that they would rectify that problem by learning about genomes and junk DNA before publishing in a good journal devoted to genomes and evolution. Alas, they didn't and, even worse, the journal published their paper with those sentences intact.

As you might imagine, these statements were seized upon by Intelligent Design Creationists who wasted no time in posting on their creationist blog [Oxford Journal: “The Days of ‘Junk DNA’ Are Over ”].

But that's not the worst of it. The same issue contains an editorial written by Casey McGrath who self identifies as a employee of the Society for Molecular Biology and Evolution in Lawrence Kansus (USA). She is the Social Media Editor for Genome Biology and Evolution. The title of her editorial is "Highlight—“Junk DNA” No More: Repetitive Elements as Vital Sources of Flatworm Variation" (McGrath, 2021). She starts off by repeating and expanding upon the words of the senior authors of the study that I referred to above.

“The days of ‘junk DNA’ are over,” according to Christoph Grunau and Christoph Grevelding, the senior authors of a new research article in Genome Biology and Evolution. Their study provides an in-depth look at an enigmatic superfamily of repetitive DNA sequences known as W elements in the genome of the human parasite Schistosoma mansoni (Stitz et al. 2021). Titled “Satellite-like W elements: repetitive, transcribed, and putative mobile genetic factors with potential roles for biology and evolution of Schistosoma mansoni,” the analysis reveals structural, functional, and evolutionary aspects of these elements and shows that, far from being “junk,” they may exert an enduring influence on the biology of S. mansoni.

“When we studied genetics at university in the 1980s, the common doctrine was that the non-protein coding parts of eukaryotic genomes consisted of interspersed, ‘useless’ sequences, often organized in repetitive elements like satellite DNA,” note Grunau and Grevelding. Since then, however, the common understanding of such sequences has fundamentally changed, revealing a plethora of regulatory sequences, noncoding RNAs, and sequences that play a role in chromosomal and nuclear structure. With their article, Grunau and Grevelding, along with their coauthors from Justus Liebig University Giessen, University of Montpellier, and Leipzig University, contribute further evidence to a growing consensus that such sequences play critical roles in evolution.

There's no rational excuse for publishing the Stitz et al. paper with those ridiculous statements and there's no rational excuse for compounding the error by highlighting them in an editorial comment. The Society for Molecular Biology and Evolution should be ashamed and embarrassed and they should issue a retraction and a clarification. They should state clearly that junk DNA is alive and well and supported by so much evidence that it would be perverse to deny it.


McGrath,C. (2012) Highlight—“Junk DNA” No More: Repetitive Elements as Vital Sources of Flatworm Variation. Genome Biology and Evolution 13: evab217 [doi: 10.1093/gbe/evab217]

Stitz, M., Chaparro, C., Lu, Z., Olzog, V.J., Weinberg, C.E., Blom, J., Goesmann, A., Grunau, C. and Grevelding, C.G. (2021) Satellite-Like W-Elements: Repetitive, Transcribed, and Putative Mobile Genetic Factors with Potential Roles for Biology and Evolution of Schistosoma mansoni. Genome Biology and Evolution 13:evab204. [doi: 10.1093/gbe/evab204]

Monday, September 27, 2021

The biggest mistake in the history of molecular biology (not!)

The creationists are committed to proving that most of our genome is functional because otherwise the idea of an intelligent designer doesn't make a lot of sense. They reject all of the evidence that supports junk DNA and they vehemently reject the notion that 90% of our genome is junk.

I was recently alerted to a video on junk DNA produced by Creation Ministries International in which they quote John Mattick.

A leading figure in genetics, Prof. John Mattick said ...'the failure to recognize the implications of the non-coding DNA will go down as the biggest mistake in the history of molecular biology'.

The creationists are making the common mistake of equating noncoding DNA and junk DNA but the quotation sounded accurate to me since John Mattick makes similar mistakes in his publications. I decided to try and find the exact quotation and reference and the closest I could come to a direct quote was in a paper by Mattick from 2007 (Mattick, 2007). He's referring to introns—here's the exact quotation.

It should be noted that the power and precision of digital communication and control systems has only been broadly established in the human intellectual and technological experience during the past 20–30 years, well after the central tenets of molecular biology were developed and after introns had been discovered. The latter was undoubtedly the biggest surprise (Williamson, 1977), and its misinterpretation possibly the biggest mistake, in the history of molecular biology. Although introns are transcribed, since they did not encode proteins and it was inconceivable that so much non-coding RNA could be functional, especially in an unexpected way, it was immediately and almost universally assumed that introns are non-functional and that the intronic RNA is degraded (rather than further processed) after splicing. The presence of introns in eukaryotic genomes was then rationalized as the residue of the early assembly of genes that had not yet been removed and that had utility in the evolution of proteins by facilitating domain shuffling and alternative splicing (Crick, 1979; Gilbert, 1978; Padgett et al., 1986). Interestingly, while it has been widely appreciated for many years that DNA itself is a digital storage medium, it was not generally considered that some of its outputs may themselves be digital signals, communicated viaRNA.

However, the idea of the biggest mistake in molecular biology predates that reference. Mattick is quoted in a Scientific American article by W. Wayt Gibbs where Gibbs is discssing the "suprising" fact that regulatory sequences are conserved and that some genes are noncoding genes (Gibbs, 2003).

“I think this will come to be a classic story of orthodoxy derailing objective analysis of the facts, in this case for a quarter of a century,” Mattick says. “The failure to recognize the full implications of this—particularly the possibility that the intervening noncoding sequences may be transmitting parallel information in the form of RNA molecules—may well go down as one of the biggest mistakes in the history of molecular biology.”

The discovery of introns in the mid-1970s was definitely a surprise but it's not true, as Mattick implies, that they were immediately assumed to be junk. In fact, as he points out, there was a lot of debate over the possible role of introns in the evolution of protein-coding genes where they could stimulate exon shuffling. Later on, the presence of introns was recognized to be an essential component of alternative splicing.

Once more and more sequences were published it became apparent that neither their size nor their sequences were conserved except for the spliceosome recognition sequences. It soon became obvious that their sequences were evolving at the neutral rate demonstrating that they were mostly junk. Mattick assumes that this conclusion—that introns are mostly junk—is one of the biggest mistakes in molecular biology. I think the opposite is true. I think that the failure of most molecular biologists to understand junk DNA is a huge mistake.

The creationists are misquoting Mattick when they say that the classification of all noncoding as junk is the biggest mistake in molecular biology. In the quotations above, Mattick is specifically referrring to introns but I'm sure he won't be upset to be misquoted in that manner since he firmly believes that most noncoding DNA is functional.

There's a bit of an ironic twist here. If it were true that knowledgeable scientists in the 1970s actually believed that all noncoding DNA was junk then I'd have to agree that this would have been a big (biggest?) mistake. But they didn't and it wasn't a big mistake. As I've said many times, no knowledgeable scientist ever said that all noncoding DNA was junk since they (we) all knew about noncoding genes, regulatory sequences, centromeres, and origins of replication, all of which are functional noncoding DNA. We now know that about 1% of our genome is coding sequences and about 9% is functional noncoding DNA. The other 90% is junk.

[Stop Using the Term "Noncoding DNA:" It Doesn't Mean What You Think It Means]


Mattick, J.S. (2007) A new paradigm for developmental biology. Journal of Experimental Biology 210:1526-1547. [doi: 10.1242/jeb.005017]

Gibbs, W.W. (2003) The unseen genome: gems among the junk. Scientific American 289:46-53.

Monday, May 10, 2021

MIT Professor Rick Young doesn't understand junk DNA

Richard ("Rick") Young is a Professor of Biology at the Massachusetts Institute of Technology and a member of the Whitehead Institute. His area of expertise is the regulation of gene expression in eukaryotes.

He was interviewed by Jorge Conde and Hanne Winarsky on a recent podcast (Feb. 1, 2021) where the main topic was "From Junk DNA to an RNA Revolution." They get just about everything wrong when they talk about junk DNA including the Central Dogma, historical estimates of the number of genes, confusing noncoding DNA with junk, alternative splicing, the number of functional RNAs, the amount of regulatory DNA, and assuming that scientists in the 1970s were idiots.

In this episode, a16z General Partner Jorge Conde and Bio Eats World host Hanne Winarsky talk to Professor Rick Young, Professor of Biology and head of the Young Lab at MIT—all about “junk” DNA, or non-coding DNA.

Which, it turns out—spoiler alert—isn’t junk at all. Much of this so-called junk DNA actually encodes RNA—which we now know has all sorts of incredibly important roles in the cell, many of which were previously thought of as only the domain of proteins. This conversation is all about what we know about what that non-coding genome actually does: how RNA works to regulate all kinds of different gene expression, cell types, and functions; how this has dramatically changed our understanding of how disease arises; and most importantly, what this means we can now do—programming cells, tuning functions up or down, or on or off. What we once thought of as “junk” is now giving us a powerful new tool in intervening in and treating disease—bringing in a whole new category of therapies.

Here's what I don't understand. How could a prominent scientist at one of the best universities in the world be so ignorant of a topic he chooses to discuss on a podcast? Perhaps you could excuse a busy scientist who doesn't have the time to research the topic but what excuse can you offer to explain why the entire culture at MIT and the Whitehead must also be ignorant? Does nobody there ever question their own ideas? Do they only read the papers that support their views and ignore all those that challenge those views?

This is a very serious question. It's the most difficult question I discuss in my book. Why has the false narrative about junk DNA, and many other things, dominated the scientific literature and become accepted dogma among leading scientists? Soemething is seriously wrong with science.


Saturday, April 03, 2021

"Dark matter" as an argument against junk DNA

Opponents of junk DNA have been largely unsuccessful in demonstrating that most of our genome is functional. Many of them are vaguely aware of the fact that "no function" (i.e. junk) is the default hypothesis and the onus is on them to come up with evidence of function. In order to shift, or obfuscate, this burden of proof they have increasingly begun to talk about the "dark matter" of the genome. The idea is to pretend that most of the genome is a complete mystery so that you can't say for certain whether it is junk or functional.

One of the more recent attempts appears in the "Journal Club" section of Nature Reviews Genetics. It focuses on repetitive DNA.

Before looking at that article, let's begin by summarizing what we already know about repetitive DNA. It includes highly repetitive DNA consisting of mutliple tandem repeats of short sequences such as ATATATATAT... or CGACGACGACGA ... or even longer repeats. Much of this is located in centromeric regions of the chromosome and I estimate that functional highly repetitve regions make up about 1% of the genome.[see Centromere DNA and Telomeres]

The other part of repetitive DNA is middle repetitive DNA, which is largely composed of transposons and endogenous viruses, although it includes ribosomal RNA genes and origins of replication. Most of these sequences are dispersed as single copies throughout the genome. It's difficult to determine exactly how much of the genome consists of these middle repetitive sequences but it's certainly more than 50%.

Almost all of the transposon- and virus-related sequences are defective copies of once active transposons and viruses. Most of them are just fragments of the originals. They are evolving at the neutral rate so they look like junk and they behave like junk.1 That's not selfish DNA because is doesn't transpose and it's not "dark matter." These fragments have all the characterstics of nonfunctional junk in our genome.

We know that the C-value paradox is mostly explained by differing amounts of repetitive DNA in different genomes and this is consistent with the idea that they are junk. We know that less that 10% of our genome is conserved and this fits in with that conclusion. Finally, we know that genetic load arguments indicate that most our genome must be impervious to mutation. Combined, these are all powerful bits of evidence and logic in favor of repetitive sequences being mostly junk DNA.

Now let's look at what Neil Gemmell says in this article.

Gemmell, N.J. (2021) Repetitive DNA: genomic dark matter matters. Nature Reviews Genetics:1-1. [doi: 10.1038/s41576-021-00354-8]

"Repetitive DNA sequences were found in hundreds of thousands, and sometimes millions, of copies in the genomes of most eukaryotes. while widespread and evolutionarily conserved, the function of these repeats was unknown. Provocatively, Britten and Kohne concluded 'a concept that is repugnant to us is that about half of the DNA of higher organisms is trivial or permanently inert.'”"

That's from Britten and Kohne (1968) and it's true that more than 50 years ago those workers didn't like the idea of junk DNA. Britten argued that most of this repetitive DNA was likely to be involved in regulation. Gemmell goes on to describe centromeres and telomeres and mentions that most repetitive DNA was thought to be junk.

"... the idea that much of the genome is junk, maintained and perpetuated by random chance, seemed as broadly unsatisfactory to me as it had to the original authors. Enthralled by the mystery of why half our genome is repetitive DNA, I have followed this field ever since."

Gemmell is not alone. In spite of all the evidence for junk DNA, the majority of scientists don't like the fact that most of our genome is junk. Here's how he justifies his continued skepticism.

"But it was not until the 2000s, as full eukaryotic genome sequences emerged, that we discovered that the repetitive non-coding regions of our genome harbour large numbers of promoters, enhancers, transcription factor binding sites and regulatory RNAs that control gene expression. More recently, the importance of repetitive DNA in both structural and regulatory processes has emerged, but much remains to be discovered and understood. It is time to shine further light on this genomic dark matter."

This appears to be the ENCODE publicity campaign legacy rearing its ugly head once more. Most Sandwalk readers know that the presence of transcription factor binding sites, RNA polymerase binding sites, and junk RNA is exactly what one would predict from a genome full of defective transposons. Most of us know that a big fat sloppy genome is bound to contain millions of spurious binding sites for transcription factors so this says nothing about function.

Apparently Gemmell's skepticism doesn't apply to the ENCODE results so he still thinks that all those bits and pieces of transposons are mysterious bits of dark matter that could be several billion base pairs of functional DNA. I don't know what he imagines they could be doing.


Photo Credit: The photo shows human chromosomes labelled with a telomere probe (yellow), from Christoher Counter at Duke University.

1. In my book, I cover this in a section called "If it walks like a duck ..." It's a form of abductive reasoning.

Britten, R. and Kohne, D. (1968) Repeated Sequences in DNA. Science 161:529-540. [doi: 10.1126/science.161.3841.529]