More Recent Comments

Showing posts sorted by relevance for query monday. Sort by date Show all posts
Showing posts sorted by relevance for query monday. Sort by date Show all posts

Monday, April 08, 2013

Monday's Molecule #201

The last Monday's Molecule was L-gulose and the winner was Bill Gunn. It was a special anniversary (#200) so I reposted my original Monday's Molecule from November 13, 2006 [Monday's Molecule #200]. I don't think it was any easier this year than it was seven years ago. That's a shame since biochemistry students should have had no problem getting the right answer if they understand the basic concept behind drawing structures of carbohydrates.

Let's see if you can do any better with the same molecule from November 20, 2006. It's a common molecule, although I think it's not taught in most introductory biochemistry courses. It's in most of the textbooks.

Post your answer as a comment. I'll hold off releasing any comments for 24 hours. The first one with the correct answer wins. I will only post mostly correct answers to avoid embarrassment. The winner will be treated to a free lunch.

There could be two winners. If the first correct answer isn't from an undergraduate student then I'll select a second winner from those undergraduates who post the correct answer. You will need to identify yourself as an undergraduate in order to win. (Put "undergraduate" at the bottom of your comment.)

Monday, October 17, 2011

Monday's Molecule #145

 
I'm restarting Monday's Molecule. The last one was almost two years ago [Monday's Molecule #144].

The rules have changed a bit. Monday's Molecule will no longer be linked to a Noble Prize because I'm running out of Nobel Prizes that lend themselves to such a linkage. All you have to do is supply the complete, unambiguous, name of the molecule to win a free lunch. Post your answer in the comments. I'll hold off releasing any comments for 24 hours. The first one with the correct answer wins.

There could be two winners. If the first correct answer isn't from an undergraduate student then I'll select a second winner from those undergraduates who post the correct answer. You will need to identify yourself as an undergraduate in order to win. (Put "undergraduate" at the bottom of your comment.)

Some past winners are from distant lands so their chances of taking up my offer of a free lunch are slim. Many of them have kindly donated their free lunch to the next contest.

Name the molecule shown in the figure. Remember that your name has to be unambiguous. The best way to do this is to use the full IUPAC name but there are several traditional names that will do.




Monday, May 06, 2013

Monday's Molecule #204

The last Monday's Molecule was α-linolenate [Monday's Molecule #203]. It is an omega-3 essential fatty acid. The winner was Anders Ehrnberg.

Today's molecule is actually three different molecules (1,2 and 3). Give the common names for the terminal part of each molecule—the names used in most textbooks. Identify E2 (enzyme name) and briefly explain what's going on.

Email your answers to me at: Monday's Molecule #204. I'll hold off posting your answers for 24 hours. The first one with the correct answer wins. I will only post mostly correct answers to avoid embarrassment. The winner will be treated to a free lunch.

There could be two winners. If the first correct answer isn't from an undergraduate student then I'll select a second winner from those undergraduates who post the correct answer. You will need to identify yourself as an undergraduate in order to win. (Put "undergraduate" at the bottom of your email message.)

Monday, March 18, 2013

Monday's Molecule #200

This is the 200th Monday's Molecule. I started this series back on November 13, 2006. Today's molecule is a repeat of that first one. Let's see if readers in 2013 can do better than those in 2006! The last "Monday's Molecule" was puromycin [Monday's Molecule #199]. The winners were Bell Gunn and River Jiang. River needs to contact me by email to set up a lunch date. I'm going to try and treat all the previous winners this week so if I owe you a lunch you should get in touch right away to collect.

The mystery molecule is an aldohexose. There are 16 different aldohexoses. The structures and names of 8 of them are show below in order to help you out.

This is a tough one. You have to know several carbohydrate naming conventions and you have to understand Fischer projections. Good luck.



Post your answer as a comment. I'll hold off releasing any comments for 24 hours. The first one with the correct answer wins. I will only post mostly correct answers to avoid embarrassment. The winner will be treated to a free lunch.

There could be two winners. If the first correct answer isn't from an undergraduate student then I'll select a second winner from those undergraduates who post the correct answer. You will need to identify yourself as an undergraduate in order to win. (Put "undergraduate" at the bottom of your comment.)

Monday, April 15, 2013

Monday's Molecule #202

The last Monday's Molecule was the pyrrolysine, 23rd amino acid. The winner was Michael Florea [Monday's Molecule #201].

Today's molecule is an enzyme. Homologous enzymes are found in all species. They play an essential role in metabolism. The green part binds the substrate and the subsequent reaction reduces a bound FAD prosthetic group (yellow). Electrons are then passed to an FAD molecule in the purple part in the orientation shown on the left. Notice that the yellow FAD molecules are close together. (The two purple parts on the left should be joined but the connection can't be resolved in the structure.) This electron transfer results in a shift in conformation to the conformation of the purple structure shown on the right. Note that the FAD molecule has shifted to a less exposed position. The purple protein then dissociates and carries electrons to an membrane-bound enzyme that transfers electrons to ubiquinol (QH2). Name the green protein and the purple protein.

This week I'm trying a new format in order to avoid moderating comments. Email your answers to me at: Monday's Molecule #202. I'll hold off posting your answers for 24 hours. The first one with the correct answer wins. I will only post mostly correct answers to avoid embarrassment. The winner will be treated to a free lunch.

There could be two winners. If the first correct answer isn't from an undergraduate student then I'll select a second winner from those undergraduates who post the correct answer. You will need to identify yourself as an undergraduate in order to win. (Put "undergraduate" at the bottom of your email message.)

Monday, April 29, 2013

Monday's Molecule #203

The last Monday's Molecule was medium chain acyl-CoA dehydrogenase (MCAD) (PDB 2AIT). Nobody got the right answer [Monday's Molecule #202].

Today's molecule is very important for humans. You need to supply the common name AND a more official IUPAC name that identifies the configuration of the bonds. You also need to briefly explain why this molecule is important in humans.

Email your answers to me at: Monday's Molecule #202. I'll hold off posting your answers for 24 hours. The first one with the correct answer wins. I will only post mostly correct answers to avoid embarrassment. The winner will be treated to a free lunch.

There could be two winners. If the first correct answer isn't from an undergraduate student then I'll select a second winner from those undergraduates who post the correct answer. You will need to identify yourself as an undergraduate in order to win. (Put "undergraduate" at the bottom of your email message.)

Monday, March 03, 2014

Monday's Molecule #231

Monday's Molecule #230 (Jan. 27, 2014) [Monday's Molecule #230] was 2-carboxy-3-ketoarabinitol 1,5-bisphosphate. It's an intermediate in the reaction catalyzed by ribulose 1,5-bisphosphate carboxylase-osygenase (Rubisco), the key enzyme in the Carvin cycle. This is the molecule created by adding CO2 to the 2-carbon atom of ribulose 1,5-bisphosphate. The winners were Bill Gunn closely followed by the first correct answer from an undergraduate, Ariel Gershon. Ariel is a student at the University of Toronto so it looks like I'm going to have to buy a lunch.

This week's molecule (below) is a sequence. Name the sequence in red and briefly describe it's function.
Email your answer to me at: Monday's Molecule #231. I'll hold off posting your answers for at least 24 hours. The first one with the correct answer wins. I will only post the names of people with mostly correct answers to avoid embarrassment. The winner will be treated to a free lunch.

There could be two winners. If the first correct answer isn't from an undergraduate student then I'll select a second winner from those undergraduates who post the correct answer. You will need to identify yourself as an undergraduate in order to win. (Put "undergraduate" at the bottom of your email message.)

Monday, March 10, 2014

Monday's Molecule #232

Monday's Molecule #231 [Monday's Molecule #231] was the Shine-Delgarno sequence found a few nucleotides upstream of the initiation codon in many bacterial mRNAs. It interacts (base pairs) with a sequence on the 3′ end of 16S RNA to help form the translation initiation complex. This means that bacteria can have polycistronic mRNAs (from operons) and internal translation initiation. The winners were Keith Conover and Nevraj Kejiou. That's two weeks in a row that an undergraduate from the University of Toronto has won. I will be taking them to lunch. I encourage undergraduates from far, far away to hurry up and send in an answer to this week's molecule!

This week's molecule (left) is covalently bound to the lysine side chain of a protein. It exists in two distinct configurations that can be interconverted by a well-known chemical reaction. Name the two different configurations (common names only) and explain the significance of the reaction.

Email your answer to me at: Monday's Molecule #232. I'll hold off posting your answers for at least 24 hours. The first one with the correct answer wins. I will only post the names of people with mostly correct answers to avoid embarrassment. The winner will be treated to a free lunch.

There could be two winners. If the first correct answer isn't from an undergraduate student then I'll select a second winner from those undergraduates who post the correct answer. You will need to identify yourself as an undergraduate in order to win. (Put "undergraduate" at the bottom of your email message.)

Monday, January 21, 2013

Monday's Molecule #198

The last "Monday's Molecule" was 2R,3S-isocitre [Monday's Molecule #197]. The winner was Evey Salara. She's probably too far away to come for lunch.

This week's molecule is very strange looking but it serves a very important role in some species. What is the molecule, what species have it, and what does it do?

Post your answer as a comment. I'll hold off releasing any comments for 24 hours. The first one with the correct answer wins. I will only post mostly correct answers to avoid embarrassment. The winner will be treated to a free lunch.

There could be two winners. If the first correct answer isn't from an undergraduate student then I'll select a second winner from those undergraduates who post the correct answer. You will need to identify yourself as an undergraduate in order to win. (Put "undergraduate" at the bottom of your comment.)

Monday, December 15, 2008

Monday's Molecule #101

 
This is the last Monday's Molecule for 2008. There will be a short Christmas break. Monday's Molecule will return on January 5th. As part of the Christmas celebrations, this week's molecule is a gift.

Your task is to identify this molecule and give it a biochemically accurate name (the IUPAC name would be perfect). The Nobel Laureate should be obvious once you identify the molecule.

The first one to correctly identify the molecule and name the Nobel Laureate, wins a free lunch at the Faculty Club. Previous winners are ineligible for one month from the time they first collected the prize.

There are four ineligible candidates for this week's reward: Ms. Sandwalk from Mississauga, Ontario, Canada, Alex Ling of the University of Toronto, Timothy Evans of the University of Pennsylvania, and John Bothwell of the Marine Biological Association of the UK in Plymouth, UK. John, Dale and Ms. Sandwalk have offered to donate the free lunch to a deserving undergraduate so the next two undergraduates to win and collect a free lunch can also invite a friend. Alex got the first one.

THEME:

Nobel Laureates
Send your guess to Sandwalk (sandwalk (at) bioinfo.med.utoronto.ca) and I'll pick the first email message that correctly identifies the "molecule" and names the Nobel Laureate(s). Note that I'm not going to repeat Nobel Laureate(s) so you might want to check the list of previous Sandwalk postings by clicking on the link in the theme box.

Correct responses will be posted tomorrow. I reserve the right to select multiple winners if several people get it right.

Comments will be blocked for 24 hours. Comments are now open.

UPDATE: The molecule is 2&prime,3′-dideoxycytidine 5′-monophosphate. This molecule differs from the normal cellular version of deoxycytidine because it is missing a second hydroxyl group at the 3′ position on the sugar. The triphosphate version of this molecule is a substrate for DNA polymerase and it will be incorporated into a growing DNA chain. However, once it is incorporated, the polymerization reaction stops because the 3′ hydroxyl group is essential for addition of the next nucleotide.

Dideoxynucleotides are used in the chain termination method of DNA sequencing developed by Frederick Sanger. Sanger received his second Nobel Prize in 1980 for developing this method, which remains the most popular method of DNA sequencing.

I was surprised that only a few people responded and even more surprised that some of the regulars didn't give a correct name for this molecule. There is no winner this week because I am being strict about nomenclature. If you didn't specify where the phosphate is attached (5′) or you used "cytosine" instead of "cytidine," then you don't get a free lunch! (Cytosine is the base, cytidine is the nucleoside.)


Monday, May 13, 2013

Monday's Molecule #205

Last week's molecule was the lipoamide swinging arm of pyruvate dehydrogenase [Monday's Molecule #204]. The winners were Alex Ling and Michael Florea.

Today's molecule is a major component of something you are all familiar with. Identify the molecule (common name only) and where it's most likely to be found. (Hint: not in humans.)

Email your answers to me at: Monday's Molecule #205. I'll hold off posting your answers for 24 hours. The first one with the correct answer wins. I will only post mostly correct answers to avoid embarrassment. The winner will be treated to a free lunch.

There could be two winners. If the first correct answer isn't from an undergraduate student then I'll select a second winner from those undergraduates who post the correct answer. You will need to identify yourself as an undergraduate in order to win. (Put "undergraduate" at the bottom of your email message.)

Monday, May 19, 2008

Monday's Molecule #72

 
Today is Victoria Day in Canada so it must be Monday—time for Monday's Molecule.


Today's molecule is essential for all life as we know it, but biochemists didn't even know it existed 'till after World War II. It's discovery was hailed as one of the greatest contributions to modern biochemistry when the Nobel Prize was awarded for working out its structure and the role it plays in metabolism.

You need to identify the molecule and give its correct common name. We don't need the formal IUPAC name in this case. Pay attention to the correct common name—some incorrect trivial names just won't do.

There's an direct connection between today's molecule and a Nobel Prize. The first person to correctly identify the molecule and name the Nobel Laureate(s) wins a free lunch at the Faculty Club. Previous winners are ineligible for one month from the time they first collected the prize. There are three ineligible candidates for this week's reward.

THEME:

Nobel Laureates
Send your guess to Sandwalk (sandwalk (at) bioinfo.med.utoronto.ca) and I'll pick the first email message that correctly identifies the molecule and names the Nobel Laureate(s). Note that I'm not going to repeat Nobel Laureate(s) so you might want to check the list of previous Sandwalk postings.

Correct responses will be posted tomorrow. I may select multiple winners if several people get it right.

Comments will be blocked for 24 hours. Comments are now open.

UPDATE: We have a winner! The molecule is uridine diphosphate glucose (UDP-glucose), one of several nucleotide-sugar coenzymes. The Nobel Laureate is Luis Leloir (1970). Several people got the right answer this week—either the quiz was too easy or lots of people have more free time now that undergraduate classes are ending! The first person to email the correct answer was Brian Rosenberg from Harvard University in Boston (Cambridge) (USA). Brian has been invited to a free lunch.


Monday, January 14, 2013

Monday's Molecule #197

The last "Monday's Molecule" was β-D-mannopyranose, shown in boat and chair configurations [Monday's Molecule #196]. The winners were Bill Chaney, Dima Klenchin, and Bill Gunn. Bill Gunn should contact me if he is within range of Toronto.

Students often find it very difficult to distinguish between various stereoisomers. For example, many of you thought that the last molecule was glucose. This week's molecule should present a real challenge for most of you. It's a common molecule, present in all cells and it has a common name by which it is identified in most textbooks. However, the common name isn't good enough because there are several different conformations. The conformation shown in the figure is the only one that's synthesized in the normal reaction. Name this molecule using whatever conventions you have to employ to identify it correctly. [Hydrogen atoms are omitted for clarity. You should be able to infer their positions.]

Post your answer as a comment. I'll hold off releasing any comments for 24 hours. The first one with the correct answer wins. I will only post mostly correct answers to avoid embarrassment. The winner will be treated to a free lunch.

There could be two winners. If the first correct answer isn't from an undergraduate student then I'll select a second winner from those undergraduates who post the correct answer. You will need to identify yourself as an undergraduate in order to win. (Put "undergraduate" at the bottom of your comment.)

Wednesday, February 04, 2009

Monday's Molecule #106: Winners

 
UPDATE: The machine is a mass spectrometer and the technique illustrated is matrix-assisted desorption ionization (MALDI) coupled to time-of-flight (TOF) measurement (MADLI-TOF).

The first person to get it right was David Schuller of Cornell University. The first undergraduate from the Toronto area was Nova Syed of the University of Toronto.



This is the second week in a row that Monday's molecule has been on a Tuesday. Sorry for the delay. I promise to get back on schedule next week.

The observant among you might have noticed that this "Monday's" molecule is not a molecule. It's my version of a machine. You have to identify what kind of a machine this is and what it does.

There are two Nobel Laureates who get credit for developing the technique shown here. One of them is responsible for the specific technique and the other for a similar variant. Name the two Nobel Lauretes.

The first person to identify the machine/technique and the Nobel Laureates wins a free lunch at the Faculty Club. Previous winners are ineligible for one month from the time they first collected the prize.

There are six ineligible candidates for this week's reward: Bill Chaney of the University of Nebraska, Maria Altshuler of the university of Toronto, Ramon, address unknown, Jason Oakley of the University of Toronto, John Bothwell from the Marine Biological Association of the UK, in Plymouth (UK), and Wesley Butt of the University of Toronto

Bill and John have offered to donate their free lunch to a deserving undergraduate so the next two undergraduates to win and collect a free lunch can also invite a friend. Since undergraduates from the Toronto region are doing better in this contest, I'm going to continue to award an additional free lunch to the first undergraduate student who can accept a free lunch. Please indicate in your email message whether you are an undergraduate and whether you came make it for your free lunch (with a friend).

THEME:

Nobel Laureates
Send your guess to Sandwalk (sandwalk (at) bioinfo.med.utoronto.ca) and I'll pick the first email message that correctly identifies the molecule and names the Nobel Laureate(s). Note that I'm not going to repeat Nobel Laureate(s) so you might want to check the list of previous Sandwalk postings by clicking on the link in the theme box.

Correct responses will be posted tomorrow. I reserve the right to select multiple winners if several people get it right.

Comments will be blocked for 24 hours. Comments are now open.


Monday, September 03, 2012

Monday's Molecule #184

Last week's molecule was raltitrexid, an anti-cancer drug [Monday's Molecule #183]. The winner was Raul A. Félix de Sousa. Raul has won ten times since I restarted Monday's Molecule last November.

This week's molecule is another strange-looking molecule with a very specific purpose. Identify the molecule and its role in mammals.

Post your answers as a comment. I'll hold off releasing any comments for 24 hours. The first one with the correct answer wins. I will only post mostly correct answers to avoid embarrassment. The winner will be treated to a free lunch.

There could be two winners. If the first correct answer isn't from an undergraduate student then I'll select a second winner from those undergraduates who post the correct answer. You will need to identify yourself as an undergraduate in order to win. (Put "undergraduate" at the bottom of your comment.)

Some past winners are from distant lands so their chances of taking up my offer of a free lunch are slim. (That's why I can afford to do this!)

In order to win you must post your correct name. Anonymous and pseudoanonymous commenters can't win the free lunch.

Winners will have to contact me by email to arrange a lunch date. Please try and beat the regular winners. Most of them live far away and I'll never get to take them to lunch. This makes me sad.

Comments are invisible for 24 hours. Comments are now open.

UPDATE: The molecule is warfarin or Coumadin®, a rat poison and an anticoagulant. It's a competitive inhibitor of vitamin K reductase and this blocks blood clotting. The winner is Matt McFarlane, one of the few people who can actually collect a free lunch. Please contact me by email.

Winners
Nov. 2009: Jason Oakley, Alex Ling
Oct. 17: Bill Chaney, Roger Fan
Oct. 24: DK
Oct. 31: Joseph C. Somody
Nov. 7: Jason Oakley
Nov. 15: Thomas Ferraro, Vipulan Vigneswaran
Nov. 21: Vipulan Vigneswaran (honorary mention to Raul A. Félix de Sousa)
Nov. 28: Philip Rodger
Dec. 5: 凌嘉誠 (Alex Ling)
Dec. 12: Bill Chaney
Dec. 19: Joseph C. Somody
Jan. 9: Dima Klenchin
Jan. 23: David Schuller
Jan. 30: Peter Monaghan
Feb. 7: Thomas Ferraro, Charles Motraghi
Feb. 13: Joseph C. Somody
March 5: Albi Celaj
March 12: Bill Chaney, Raul A. Félix de Sousa
March 19: no winner
March 26: John Runnels, Raul A. Félix de Sousa
April 2: Sean Ridout
April 9: no winner
April 16: Raul A. Félix de Sousa
April 23: Dima Klenchin, Deena Allan
April 30: Sean Ridout
May 7: Matt McFarlane
May 14: no winner
May 21: no winner
May 29: Mike Hamilton, Dmitri Tchigvintsev
June 4: Bill Chaney, Matt McFarlane
June 18: Raul A. Félix de Sousa
June 25: Raul A. Félix de Sousa
July 2: Raul A. Félix de Sousa
July 16: Sean Ridout, William Grecia
July 23: Raul A. Félix de Sousa
July 30: Bill Chaney and Raul A. Félix de Sousa
Aug. 7: Raul A. Félix de Sousa
Aug. 13: Matt McFarlane
Aug. 20: Stephen Spiro
Aug. 27: Raul A. Félix de Sousa
Sept. 3: Matt McFarlane


Monday, March 11, 2013

Monday's Molecule #199

The last "Monday's Molecule" was phycoerythrin [Monday's Molecule #198]. The winner was Piotr Gasiorowski.

This week's molecule can do some very bad things to certain cells. You just have to give the common name and briefly explain what it does and how it works.

Post your answer as a comment. I'll hold off releasing any comments for 24 hours. The first one with the correct answer wins. I will only post mostly correct answers to avoid embarrassment. The winner will be treated to a free lunch.

There could be two winners. If the first correct answer isn't from an undergraduate student then I'll select a second winner from those undergraduates who post the correct answer. You will need to identify yourself as an undergraduate in order to win. (Put "undergraduate" at the bottom of your comment.)

Tuesday, August 07, 2012

Monday's Molecule #180

It's Tuesday, so it must be time for Monday's Molecule.... Oops.1

Last week we looked at an important intermediate in the Calvin cycle—the main pathway for fixing carbon dioxide in many species [Monday's Molecule #179]. Today we're going to look at the intermediate in another pathway. Name the molecule, the common name will do.

Discovery of this molecule, and the pathway it's involved in, was an important contribution to understanding basic metabolism in most cells. The enzyme that makes it has been characterized. It's now one of the most widely studied enzymes in biochemistry. The pathway is essential for all species, with a few minor exceptions.

This knowledge has been exploited by technology to an extent never imagined only 50 years ago. Name the technology and how it makes use of what we know about the enzyme and the pathway. For extra bonus points, explain how the molecule got it's root Japanese name.

Post your answers as a comment. I'll hold off releasing any comments for 24 hours. The first one with the correct answer wins. I will only post mostly correct answers to avoid embarrassment. The winner will be treated to a free lunch with a very famous person, or me.

There could be two winners. If the first correct answer isn't from an undergraduate student then I'll select a second winner from those undergraduates who post the correct answer. You will need to identify yourself as an undergraduate in order to win. (Put "undergraduate" at the bottom of your comment.)

Some past winners are from distant lands so their chances of taking up my offer of a free lunch are slim. (That's why I can afford to do this!)

In order to win you must post your correct name. Anonymous and pseudoanonymous commenters can't win the free lunch.

Winners will have to contact me by email to arrange a lunch date. Please try and beat the regular winners. Most of them live far away and I'll never get to take them to lunch. This makes me sad.

Comments are invisible for 24 hours. Comments are now open.

UPDATE:The molecule is 5-enolpyruvylshikimate 3-phosphate an intermediate in the chorismate pathway and the synthesis of tryptophan, phenylalanine, and tyrosine. The enzyme that produces this product is EPSP synthase and some bacterial versionsof this enzyme are resistant to glyphosate, the active ingredient in the herbicide Roundup®.

The gene for the resistant enzyme can be inserted into crop plants making them resistant to Roundup®.

The winner would have been Ben but I can't identify that person. The winner is Raul A. Félix de Sousa.

Winners
Nov. 2009: Jason Oakley, Alex Ling
Oct. 17: Bill Chaney, Roger Fan
Oct. 24: DK
Oct. 31: Joseph C. Somody
Nov. 7: Jason Oakley
Nov. 15: Thomas Ferraro, Vipulan Vigneswaran
Nov. 21: Vipulan Vigneswaran (honorary mention to Raul A. Félix de Sousa)
Nov. 28: Philip Rodger
Dec. 5: 凌嘉誠 (Alex Ling)
Dec. 12: Bill Chaney
Dec. 19: Joseph C. Somody
Jan. 9: Dima Klenchin
Jan. 23: David Schuller
Jan. 30: Peter Monaghan
Feb. 7: Thomas Ferraro, Charles Motraghi
Feb. 13: Joseph C. Somody
March 5: Albi Celaj
March 12: Bill Chaney, Raul A. Félix de Sousa
March 19: no winner
March 26: John Runnels, Raul A. Félix de Sousa
April 2: Sean Ridout
April 9: no winner
April 16: Raul A. Félix de Sousa
April 23: Dima Klenchin, Deena Allan
April 30: Sean Ridout
May 7: Matt McFarlane
May 14: no winner
May 21: no winner
May 29: Mike Hamilton, Dmitri Tchigvintsev
June 4: Bill Chaney, Matt McFarlane
June 18: Raul A. Félix de Sousa
June 25: Raul A. Félix de Sousa
July 2: Raul A. Félix de Sousa
July 16: Sean Ridout, William Grecia
July 23: Raul A. Félix de Sousa
July 30: Bill Chaney and Raul A. Félix de Sousa
Aug. 7: Raul A. Félix de Sousa


1. I got confused because yesterday was Simcoe Day.

Monday, September 28, 2009

Monday's Molecule #138

 
This is the earliest posting of a Monday's Molecule. It should make the contest open to a whole new category of Sandwalk readers, especially those in Europe who will see it long before the readers in North America are awake.

It will also work for Asian readers and a few North and South Americans who are up very late at night. (Note to the latter group: get a life! )

The molecule is a compex of three different proteins. One of them—the yellow one—has already been featured as a Monday's Molecule last April. This time I want you to identify the purple molecule. It was first identified and characterized in the organism shown below then subsequently found in lots of other species.

The Nobel Laureate from last April shared the prize with the person who discovered today's molecule. Name that Nobel Laureate.

The first person to identify the molecule and name the Nobel Laureate wins a free lunch. Previous winners are ineligible for six weeks from the time they first won the prize.

There are only three ineligible candidates for this week's reward: Philip Johnson of the University of Toronto, Ben Morgan of the University of North Carolina at Chapel Hill and Frank Schmidt of the University of Missouri.

Frank has agreed to donate his free lunch to a deserving undergraduate. Consequently, I have an extra free lunch for a deserving undergraduate so I'm going to award an additional prize to the first undergraduate student who can accept it. Please indicate in your email message whether you are an undergraduate and whether you can make it for lunch. If you can't make it for lunch then please consider donating it to someone who can in the next round.

THEME:

Nobel Laureates
Send your guess to Sandwalk (sandwalk (at) bioinfo.med.utoronto.ca) and I'll pick the first email message that correctly identifies the molecule(s) and names the Nobel Laureate(s). Note that I'm not going to repeat Nobel Prizes so you might want to check the list of previous Sandwalk postings by clicking on the link in the theme box.

Correct responses will be posted tomorrow.

Comments will be blocked for 24 hours. Comments are now open.


Tuesday, February 03, 2009

Monday's Molecule #106

 
This is the second week in a row that Monday's molecule has been on a Tuesday. Sorry for the delay. I promise to get back on schedule next week.

The observant among you might have noticed that this "Monday's" molecule is not a molecule. It's my version of a machine. You have to identify what kind of a machine this is and what it does.

There are two Nobel Laureates who get credit for developing the technique shown here. One of them is responsible for the specific technique and the other for a similar variant. Name the two Nobel Lauretes.

The first person to identify the machine/technique and the Nobel Laureates wins a free lunch at the Faculty Club. Previous winners are ineligible for one month from the time they first collected the prize.

There are six ineligible candidates for this week's reward: Bill Chaney of the University of Nebraska, Maria Altshuler of the university of Toronto, Ramon, address unknown, Jason Oakley of the University of Toronto, John Bothwell from the Marine Biological Association of the UK, in Plymouth (UK), and Wesley Butt of the University of Toronto

Bill and John have offered to donate their free lunch to a deserving undergraduate so the next two undergraduates to win and collect a free lunch can also invite a friend. Since undergraduates from the Toronto region are doing better in this contest, I'm going to continue to award an additional free lunch to the first undergraduate student who can accept a free lunch. Please indicate in your email message whether you are an undergraduate and whether you came make it for your free lunch (with a friend).

THEME:

Nobel Laureates
Send your guess to Sandwalk (sandwalk (at) bioinfo.med.utoronto.ca) and I'll pick the first email message that correctly identifies the molecule and names the Nobel Laureate(s). Note that I'm not going to repeat Nobel Laureate(s) so you might want to check the list of previous Sandwalk postings by clicking on the link in the theme box.

Correct responses will be posted tomorrow. I reserve the right to select multiple winners if several people get it right.

Comments will be blocked for 24 hours.


Monday, August 13, 2012

Monday's Molecule #181

Last week's molecule was an intermediate in some amino acid biosynthesis pathways and the enzyme that makes it is the target of Roundup®. Replacing this enzyme with a Roundup® resistant version yields genetically modified food plants [Monday's Molecule #180].

This week's molecule is a lot more complicated. You need to identify the specific type of molecule. Defective metabolism of this molecule is associated with a famous disease. Name the disease.

Post your answers as a comment. I'll hold off releasing any comments for 24 hours. The first one with the correct answer wins. I will only post mostly correct answers to avoid embarrassment. The winner will be treated to a free lunch.

There could be two winners. If the first correct answer isn't from an undergraduate student then I'll select a second winner from those undergraduates who post the correct answer. You will need to identify yourself as an undergraduate in order to win. (Put "undergraduate" at the bottom of your comment.)

Some past winners are from distant lands so their chances of taking up my offer of a free lunch are slim. (That's why I can afford to do this!)

In order to win you must post your correct name. Anonymous and pseudoanonymous commenters can't win the free lunch.

Winners will have to contact me by email to arrange a lunch date. Please try and beat the regular winners. Most of them live far away and I'll never get to take them to lunch. This makes me sad.

Comments are invisible for 24 hours. Comments are now open.

UPDATE: The molecule is ganglioside GM2. Defects in ganglioside synthesis are responsible for a number of genetic diseases in humans including Tay-Sachs disease. This is the same molecule featured in Monday's Molecule #162 back on March 19, 2012. There was no winner that time.

This week's winner is Matt McFarlane, an undergraduate. He lives in Canada but he's quite far away and probably won't make it for lunch.

Winners
Nov. 2009: Jason Oakley, Alex Ling
Oct. 17: Bill Chaney, Roger Fan
Oct. 24: DK
Oct. 31: Joseph C. Somody
Nov. 7: Jason Oakley
Nov. 15: Thomas Ferraro, Vipulan Vigneswaran
Nov. 21: Vipulan Vigneswaran (honorary mention to Raul A. Félix de Sousa)
Nov. 28: Philip Rodger
Dec. 5: 凌嘉誠 (Alex Ling)
Dec. 12: Bill Chaney
Dec. 19: Joseph C. Somody
Jan. 9: Dima Klenchin
Jan. 23: David Schuller
Jan. 30: Peter Monaghan
Feb. 7: Thomas Ferraro, Charles Motraghi
Feb. 13: Joseph C. Somody
March 5: Albi Celaj
March 12: Bill Chaney, Raul A. Félix de Sousa
March 19: no winner
March 26: John Runnels, Raul A. Félix de Sousa
April 2: Sean Ridout
April 9: no winner
April 16: Raul A. Félix de Sousa
April 23: Dima Klenchin, Deena Allan
April 30: Sean Ridout
May 7: Matt McFarlane
May 14: no winner
May 21: no winner
May 29: Mike Hamilton, Dmitri Tchigvintsev
June 4: Bill Chaney, Matt McFarlane
June 18: Raul A. Félix de Sousa
June 25: Raul A. Félix de Sousa
July 2: Raul A. Félix de Sousa
July 16: Sean Ridout, William Grecia
July 23: Raul A. Félix de Sousa
July 30: Bill Chaney and Raul A. Félix de Sousa
Aug. 7: Raul A. Félix de Sousa
Aug. 13: Matt McFarlane