More Recent Comments

Showing posts sorted by date for query mattick. Sort by relevance Show all posts
Showing posts sorted by date for query mattick. Sort by relevance Show all posts

Wednesday, October 23, 2024

Philip Ball doesn't understand sloppy genomes

... anything found to be true of E.coli must also be true of Elephants.
                                                         Jacques Monod (1961)

This version of the famous statement by Jacques Monod comes from 1961 but he said similar things much earlier and other scientists even predate Monod's earliest use of the phrase (Friedman, 2004). He echoed this same idea in Chance and Necessity (p. 102)

The diversity of types remained even so, and there was no getting around the fact that a great many macroscopic structural patterns, radically unlike one another, coexist in the biosphere. A blue alga, an infusorium, an octopus, and a human being—what had they in common? With the discovery of the cell and the advent of cellular theory a new unity could be seen under this diversity. But it was some time before advances in biochemistry, mainly during the second quarter of this century, revealed the profound and strict oneness, on the microscopic level, of the whole of the living world. Today we know that from a bacterium to man the chemical machinery is essentially the same, in both its structure and its functioning.

Monod was making a case for life as a chemical process and he reflected the view of the 'phage group who were studying bacteria and bacteriophage. He argued that all living things would consist of the same basic chemicals such as lipids, nucleic acids, proteins, and carbohydrates. He also assumed that all living things would have similar networks of metabolic enzymes and contain similar pathways. These enzymes would be regulated by similar mechanisms, such as allosteric regulation, and they would be composed of the same 20 amino acids. He expected all living cells would have similar mechanisms for capturing energy and they would obey the fundamental laws of thermodynamics.

He assumed that the genetic code would be universal and that the process of protein synthesis would be essentially the same in all species. He assumed that the fundamentals of transcription and DNA replication would be the same in all species. He imagined that the basic principles of gene regulation that were worked out in bacteria would apply to eukaryotes. This included the action of transcription factors and more unusual regulatory molecules such as the regulatory RNAs discovered in 'phage and bacteria. He expected that genes, regulatory sequences, origins of replication, and other important genetic elements would be found in the DNA molecules of the genome.

This theme of unity of life at the microscopic level was very important but it did not mean that all living things would be identical. Monod was a firm proponent of evolution and since evolution depended on the random occurrence of mutations the actual history of life is unpredictable. There's nothing profoundly upsetting about the fact that elephants have trunks and E. coli doesn't because that's not the point.

I'm sure that Monod was not upset to learn that some genes had introns or that eukarotic chromatin is more complicated than the DNA-protein complexes found in bacteria. He would not have been shocked to learn that many eukaryotes have more functional RNAs than E. coli or bacteriophage λ. Junk DNA was not a problem for someone who understood evolution.

I think Monod reflected the dominant view of most knowledgeable biochemists and molecular biologists of the 1960s and 1970s.

Over the next 50 years we learned a lot more about complex eukaryotes and the dominant theme at the molecular level is that they contain lots of junk DNA and lots of overly complex structures that only make sense in light of evolution. There's a lot of sloppiness in eukaryotes, including genomes full of transposon fossils, aberrant transcription, pseudogenes, inefficient splicing, and promiscuous enzymes. A lot of this sloppiness was apparent in the 1970s, including the fact that junk DNA must contain thousands of ineffective transcription factor binding sites. We learned in the 1980s that some structures, such as the spliceosome, could only have arisen by evolution since no designer in their right mind would have built such a thing.

I would be quite proud to have served on the committee that designed the E. coli genome. There is, however, no way that I would admit to serving on a committee that designed the human genome. Not even a university committee could botch something that badly.                                                          David Penny

I got this quote from Dan Graur who credits it to David Penny as a personal communication. Graur used it in his scathing criticism of ENCODE researchers after they declared the death of junk DNA (Graur et al., 2013). The meaning is clear. The E. coli genome is compact and carries all the information needed to ensure the survival and evolution of the bacterium. It has one copy of most protein-coding genes, two copies of ribosomal RNA genes, and a minimal number of tRNA genes. The regulatory sequences are just big enough for efficient transcription under the appropriate conditions. Many genes are clustered in operons to save space. There's only one origin of replication and one terminator sequence. There's only one chromosome and it is efficiently segregated to each daughter cell after DNA replication and cell division. There are only a small number of regulatory RNA genes in E. coli.

The human genome is a mess. 90% of it is junk and it requires complicated features like centromeres and telomeres. There are 100,000 origins of replication and tens of thousands of pseudogenes. The protein-coding genes are full of useless introns and they take up 40% of the genome even though the functional parts only occupy 1%. Every cell has thousands of incorrectly spliced transcripts. The genome is littered with fossil transposons and viruses and many of them still have partially active promoters churning out junk RNA. Useless transcription factor binding sites and chromatin alterations are ubiquitous. The abundance of junk DNA means that you need tens of thousands of copies of every transcription factor just to make sure the right genes are regulated. A large part of the genome is transcribed but the vast majority of those transcripts are useless junk.

This is why David Penny would not be proud to have served on the committee that designed the human genome. Neither would I, and that's why I spent so much time explaining sloppy genomes in my book. The idea of a sloppy genome is a difficult concept to grasp so I devoted the final chapter (Chapter 11) to the art of coping with this issue.

Now let's look at how Philip Ball handles this information on pages 116-117 of his book How Life Works.

These differences in the relative proportions of coding and non-coding DNA for simpler and more complex organisms reflect fundamental distinctions in how these organisms work. The problem has been delightfully, if inadvertently, stated by theoretical biologist David Penny. "I would be quite proud to have served on the committee that designed the E. coli genome" he has said. "There is, however, no way that I would admit to serving on a committee that designed the human genome. Not even a university committee could botch something that badly."

I'd suggest that can be rephrased: "I can understand how the E. coli genome works. I cannot make any sense of how the human genome works." So the corollary of Penny's comment is rather profound: how E. coli works is not how humans work. But his quip betrays an understandable frustration that the workings of the human genome are inscrutable to us. And I fear that the remark carries the same bias as that which leads us to insist that a foreign language we find difficult to learn is unnecessarily perverse and even absurd.

This shift in perspective challenges a famous statement by Jacques Monod: "What is true for E. coli is true for the elephant." In fairness, Monod had in mind here the notion of how DNA encodes proteins—for indeed it does so in (roughly) the same way in bacteria as in pachyderms, insofar as it uses the same genetic code. But the implication in Monod's comment is that this is what really matters in the same spirit as Crick's Central Dogma. We can now see that Monod's quote is misleading in an important sense, because what matters for E. coli is not the same as what matters for an elephant. The bacterium has a genome dedicated mostly to making proteins. The elephant has a genome dedicated mostly to making noncoding RNAs with regulatory functions. To truly understand how the elephant—and the human—works, we need to untangle the mechanisms governing this regulation.

As Morris and Mattick say,

It appears that we may have fundamentally misunderstood the nature of the genetic programming in complex organisms because of the assumption that most genetic information is transacted by proteins. This may be largely true in simpler organisms, but is turning out not to be the case in more complex organisms, whose genomes appear to be progressively dominated by regulatory RNAs that orchestrate the epigenetic trajectories of differentiation and development.

Or as biochemist Danny Licatalosi and neuroscientist Robert Darnell put it, biological complexity "has RNA at its core."

I think this is an excellent illustration of the differing viewpoints of Philip Ball and many biochemists and molecular biologists. David Penny and the rest of us don't disparage the human genome because we don't understand it. Quite the contrary. We think we DO understand evolution and the basic principles of molecular biology and that's why we recognize a sloppy genome when we see it. Philip Ball just can't get his head around the fact that we aren't ignorant of functional non-coding RNAs ... we just don't believe Mattick and ENCODE when they claim, without evidence, that the human genome is full of non-coding genes modulating some sophisticated regulation of the protein-coding genes.

Not only does such a model lack support but it doesn't make any sense. Why would all the 10,000 or so housekeeping genes require such regulation in humans and not in yeast? Why would evolution have selected for regulatory RNAs acting on the genes for the glycolytic enzymes? What kind of selective advantage would there have to be in order to evolve a regulatory RNA gene that could tweek expression by a few percent?

"Ball is one of the most meticulous, precise science writers out there. He is the antithesis of hypey, "dumb-it-down" reporting. He is MUCH more credible than you are, Laurence."

John Horgan July, 2024
Philip Ball even wants to twist the Monod quote to fit his agenda on the importance of proteins. That's not what Monod meant. But let's think about this for a minute. The biochemists of the last century discovered a complex network of metabolic pathways with reactions that were catalyzed almost exclusively by protein enzymes. That hasn't changed. It's true of E. coli and it's true of elephants.

They also discovered that the expression of genes, especially at the level of transcription, was mostly controlled and regulated by proteins; namely, RNA polymerase and transcription factors. That hasn't changed. The expression of elephant and human genes is also regulated by transcription factors and RNA polymerase. Hundreds of studies of particular mammalian genes have demonstrated beyond a doubt that we can explain most regulation by such a model.

That doesn't mean that proteins are the only players in regulation. Over the past several decades we've discovered a variety of regulatory RNAs and we now know that there are more of these non-coding genes in humans than in bacteria. We don't know how many but so far the number of well-characterized examples amounts to fewer than 2000 genes and probably less than 1000. Note that I said "well-characterized" examples and that means that the individual RNA molecule has been studied and its biologically relevant function has been confirmed. That's not the same as a genomics study that simply identifies candidate transcripts that may or may not have a function.

Proteins still play the most important functional roles in metabolism and gene expression but they are not the only players. We've known that for 50 years. The only thing that's changed is that there may be as many as two thousand non-coding genes in humans and only a dozen or so in E. coli and the human genome may be a lot more sloppy than bacterial genomes. That's not a paradigm shift.

Note: Philip Ball was an editor at Nature and that's ironic because it's the failure of Nature editors to do their job in 2012 that got us into the mess we're in today. The editors not only allowed ENCODE researchers to make exaggerated claims about junk DNA but they actively supported and participated in the publicity campaign that sold those false claims to the general public. Nature editors have never apologized for their behavior in 2012; in fact, one of them, Magdalena Skipper, has been promoted to editor-in-chief. [The 10th anniversary of the ENCODE publicity campaign fiasco]


Friedman, H.C. (2004) From Butyribacterium to E. coli: An Essay on Unity in Biochemistry. Perspectives in Biology and Medicine 47:47-66. doi: 10.1353/pbm.2004.0007

Graur, D., Zheng, Y., Price, N., Azevedo, R.B., Zufall, R.A. and Elhaik, E. (2013) On the immortality of television sets:“function” in the human genome according to the evolution-free gospel of ENCODE. Genome Biology and Evolution 5:578-590. doi: doi: 10.1093/gbe/evt028

Monday, October 21, 2024

Philip Ball strikes back

Philip Ball believes that we are in the middle of a revolution in our way of thinking about how life works. His ideas are complex but part of his case involves molecular biology and how things work at the molecular level. Ball believes that the old view of molecular biology placed far too much emphasis on coding DNA and ignored all the other functional regions of genomes. He also says that most of our genes specify non-coding RNA instead of mRNA and implies to his readers that a very large fraction of our genome is functional (i.e. not junk).1

In order to build the case for revolution, he tries to demonstrate a paradigm shift in our view of molecular biology by showing a huge gap between the understanding of previous generations of molecular biologists and the post-genomic view. I believe he is wrong about this for two reasons: first, he misrepresents the views of older molecular biologists and, second he misrepresents the discoveries of the past twenty years. I tried to explain why he was wrong about these two claims in a previous post where I discussed an article he published in Scientific American in May 2024: Philip Ball says RNA may rule our genome.

Philip Ball responded to my criticism in a comment under that article.

Older molecular biologists were really stupid

I said ...

Ball begins with the same old myth that writers like him have been repeating for many years. He claims that before ENCODE most molecular biologists were really stupid. According to Philip Ball, most of us thought that coding DNA was the only functional part of the genome and most of the rest was junk DNA.

In the comment section of my earlier post, Philip Ball says,

I’m sorry to say that Larry’s commentary here is dismayingly inaccurate.

Let’s get this one out of the way first:

“He claims that before ENCODE most molecular biologists were really stupid.”

I have never made this claim and never would – it is a pure fabrication on Larry’s part. I guess this is what John Horgan meant in his comment to Larry: credible writers don’t just make up stuff.

I admit that Philip Ball never said those exact words. I'll leave it to the readers to decide whether my characterization of his position is accurate.

I stand by the statements I made although I admit to a bit of hyperbole. Ball has said repeatedly that the molecular biologists of my generation were wedded to the idea that coding regions were the only important part of the genome and he often connects that to the Central Dogma of Molecular Biology. He also claims that the experts in molecular biology dismissed all non-coding DNA as junk. Here's how he puts it in another article that he published recently in Aeon: We are not machines.

Only around 1-2 per cent of the entire human genome actually consists of protein-coding genes. The remainder was long thought to be mostly junk: meaningless sequences accumulated over the course of evolution. But at least some of that non-coding genome is now known to be involved in regulating genes: altering, activating or suppressing their transcription in RNA and translation into proteins.

I interpret that to mean that older molecular biologists, like me, didn't know about functional non-coding DNAs such as centromeres, telomeres, origins of replication, non-coding genes, SARs, and regulatory sequences in spite of the fact that thousands of papers on these sequences were published in the 30 years that preceded the publication of the first draft of the human genome sequence. This is not true, we did know about those things. I don't think it's too much of an exaggeration to say that Philip Ball thinks we were really stupid.

Here's what he says in his book, "How Life Works" (p. 85) when he's talking about the beginning of the human genome project.

Even at its outset, it faced the somewhat troubling issue that just 2 percent or so of our genome actually accounts for protein-coding genes. The conventional narrative was that our biology was all about proteins, for each of which the genome held the template. ... But we had all this other DNA too! What was it for? The common view was that it was mostly just junk, like the stuff in our attics: meaningless material accumulated during evolution, which our cells had no motivation to clear out.

Again, his claim is that in 1990 at the beginning of the human genome project the experts in molecular biology thought that non-coding DNA was mostly junk (98% of the genome). I have repeatedly refuted this myth and challenged anyone to come up with a single scientific paper arguing that all non-coding DNA is junk. I challenge Philip Ball to find a single molecular biology textbook written before 1990 that fails to discuss regulation, non-coding genes, and other non-coding functional elements in the human genome.

The truth is that the molecular biology experts concluded in the 1970s that we had about 30,000 genes and that 90% of our genome is junk and 10% is functional. That 10% consisted of about 2% coding DNA (now thought to be only 1%) and 8% functional non-coding DNA. So the "conventional narrative" was that there was a lot more functional non-coding DNA than coding DNA.

The human genome is full of genes for regulatory RNAs.

"Ball is one of the most meticulous, precise science writers out there. He is the antithesis of hypey, "dumb-it-down" reporting. He is MUCH more credible than you are, Laurence."

John Horgan July, 2024
The title of the article I was discussing is "Revolutionary Genetics Research Shows RNA May Rule Our Genome." In that article Ball says that ENCODE was basically right and there are many more non-coding genes than protein-coding genes. I pointed out that Ball mentions some criticism of this idea but only to dismiss it. I said that "[Ball] wants you to believe that almost of all of those transcripts are functional—that's the revolution that he's promoting." Philip Ball objects to this statement ...

This too is sheer fabrication. I don’t say this in my article, nor in my book. Instead, I say pretty much what Larry seems to want me to say, but for some reason he will not admit it – which is that there is controversy about how many of the transcripts are functional."

Ball states that "ENCODE was basically right" when they claimed that 75% of our genome was transcribed and he goes on to say that ...

Dozens of other research groups, scoping out activity along the human genome, also have found that much of our DNA is churning out 'noncoding' RNA.

He says that ENCODE has identified 37,000 noncoding genes but there may be as many as 96,000. After making these definitive statements, he mentions that there are "still doubters" but then discuss why these discoveries are revolutionary. Later on he quotes John Mattick suspecting that there may be more that 500,000 non-coding genes.

Toward the end of the article, after discussing all kinds of functional RNAs, he brings up the Ponting and Haerty review where they say that most lncRNAs are just noise. He also mentions that the low copy number of non-coding RNAs raises questions about whether they are functional but immediately counters with the standard excuses from his allies.

Ball closes the article with ...

Gingeras says he is perplexed by ongoing claims that ncRNAs are merely noise or junk, as evidence is mounting that they do many things. "It is puzzling why there is such an effort to persuade colleagues to move from a sense of interest and curiosity in the ncRNA field to a more dubious and critical one," he says.

Perhaps the arguments are so intense because they undercut the way we think our biology works. Ever since the epochal discovery about DNA's double helix and how it encodes information, the bedrock idea of molecular biology has been that there are precisely encoded instructions that program specific molecules for particular tasks. But ncRNAs seem to point to a fuzzier, more collective, logic to life. It is a logic that is harder to discern and harder to understand. ut if scientists can learn to live with the fuzziness, this view of life may turn out to be more complete.

What's remarkable about the quote from a leading ENCODE worker (Gingeras) is that he is "puzzled" by scientists who are dubious and critical about claims in the ncRNA field. Isn't that what good scientists are supposed to do? Isn't that exactly what we did when we successfully challenged the dubious claims about junk DNA made in 2012?

There is no doubt in my mind that Philip Ball has fallen hook-line-and-sinker for the ENCODE claims that our genome is buzzing with non-coding genes. He only brings up the counter-arguments to dismiss them and pretend that he is being fair. Nobody who was truly skeptical about the function of transcripts would write an article with the title, "Revolutionary Genetics Research Shows RNA May Rule Our Genome."

However, as Ball points out in other comments, he does have a sentence in his book where he mentions that perhaps only 30% of the genome is functional. He says in the comment that what he believes is that the amount of functional DNA lies somewhere between 10% and 30%. That's not something that he mentions in the Scientific American article but, if he's being honest, it does mean that I was unfair when I said he believes that "almost of all of those transcripts are functional" but I only know that from what he now says, not from the published article.

If I were to take Philip Ball at his word—as expressed in the comment—then he must believe that most of the ENCODE transcripts are junk RNA. That's not a belief that you get from reading his published work.2 Furthermore, if I were to take him at his word, then he must believe that there are some reasonable criteria that must be applied to a transcript in order to decide whether it has a biologically relevant function. So, when he says that ENCODE identified 37,600 non-coding genes he must have these criteria in mind but he doesn't express any serious skepticism about that number. We all know that there's no solid evidence that such a large number of transcripts are functional but that doesn't bother Philip Ball. He thinks we are in the middle of an RNA revolution.


1. In commenting to my previous post, Ball says he believes that somewhere between 70% and 90% of our genome is junk but he doesn't say this in the Scientific American article. Instead, he says that scientists were surprised to learn that 75% of the human genome is transcribed implying that there's a lot of function. He goes on the say that "ENCODE was basically right." But what the ENCODE publicity campaign actually said was that junk DNA is dead and there's practically no junk DNA. If Ball really believes that up to 90% of the genome is junk then to me this means that ENCODE was spectacularly wrong not "basically right."

2. Ball says that 75% of the genome is transcribed. If Ball believes that as little as 10% may be functional then he must believe that less than 10% is transcribed to produce functional RNAs since he has to allow for regulatory sequences and other functional DNA elements. Let's say that 8% is a reasonable number. Ball seems to be willing to admit that 67% of the genome might be transcribed to produce junk RNA.

Tuesday, October 01, 2024

Jonathan Wells (1942 - 2024)

Johnathan Wells died recently. He was a well-known Intelligent Design Creationist and that's why Evolution News (sic) is eulogizing him by posting multiple tributes and excerpts from his books and essays.

I think it's only fair to post links to my efforts to demonstrate the serious flaws in his arguments. I'm particularly proud of the series of articles I wrote when he published his book The Myth of Junk DNA. I went through every chapter and analyzed his arguments against junk DNA. It won't surprise anyone to learn that I found those arguments lacking in substance and in some cases I discovered that Wells had misrepresented the science.

Here are my posts.

Jonathan Wells never responded directly to my criticism but he did respond to a comment that Paul McBride made on one of his blog posts. Paul asked him why he didn't respond to my post and here's what Wells said,

Oh, one last thing: “paulmc” referred to an online review of my book by University of Toronto professor Larry Moran—a review that “paulmc” called both extensive and thorough. Well, saturation bombing is extensive and thorough, too. Although “paulmc” admitted to not having read more than the Preface to The Myth of Junk DNA, I have read Mr. Moran’s review, which is so driven by confused thinking and malicious misrepresentations of my work—not to mention personal insults—that addressing it would be like trying to reason with a lynch mob.

This is typical of the attitude of most Intelligent Design Creationists. They are happy to publish lengthy books denegrating science and scientists but couldn't be bothered responding to criticism.

Here's are some other post of mine where I demonstrate the flawed thinking of Jonathan Wells.

Friday, September 27, 2024

John Mattick's seminar at the University of Toronto

I just learned that John Mattick gave a seminar this morning at the Department of Cell & Systems Biology at the University of Toronto. Unfortunately, I was unable to attend.

Most Sandwalk readers will recognize Mattick as one of the few remaining vocal opponents of junk DNA. He is probably best known for his dog-ass plot but this is only one of the ways he misrepresents science.

Wednesday, March 13, 2024

Nils Walter disputes junk DNA: (7) Conservation of transcribed DNA

I'm discussing a recent paper published by Nils Walter (Walter, 2024). He is arguing against junk DNA by claiming that the human genome contains large numbers of non-coding genes.

This is the seventh post in the series. The first one outlines the issues that led to the current paper and the second one describes Walter's view of a paradigm shift/shaft. The third post describes the differing views on how to define key terms such as 'gene' and 'function.' In the fourth post I discuss his claim that differing opinions on junk DNA are mainly due to philosophical disagreements. The fifth and sixth posts address specific arguments in the junk DNA debate.


Sequence conservation

If you don't know what a transcript is doing then how are you going to know whether it's a spurious transcript or one with an unknown function? One of the best ways is to check and see whether the DNA sequence is conserved. There's a powerful correlation between sequence conservation and function: as a general rule, functional sequences are conserved and non-conserved sequences can be deleted without consequence.

There might be an exception to the the conservation criterion in the case of de novo genes. They arise relatively recently so there's no history of conservation. That's why purifying selection is a better criterion. Now that we have the sequences of thousands of human genomes, we can check to see whether a given stretch of DNA is constrained by selection or whether it accumulates mutations at the rate we expect if its sequence were irrelevant junk DNA (neutral rate). The results show that less than 10% of our genome is being preserved by purifying selection. This is consistent with all the other arguments that 90% of our genome is junk and inconsistent with arguments that most of our genome is functional.

This sounds like a problem for the anti-junk crowd. Let's see how it's addressed in Nils Walter's article in BioEssays.

There are several hand-waving objections to using conservation as an indication of function and Walter uses them all plus one unique argument that we'll get to shortly. Let's deal with some of the "facts" that he discusses in his defense of function. He seems to agree that much of the genome is not conserved even though it's transcribed. In spite of this, he says,

"... the estimates of the fraction of the human genome that carries function is still being upward corrected, with the best estimate of confirmed ncRNAs now having surpassed protein-coding genes,[12] although so far only 10%–40% of these ncRNAs have been shown to have a function in, for example, cell morphology and proliferation, under at least one set of defined conditions."

This is typical of the rhetoric in his discussion of sequence conservation. He seems to be saying that there are more than 20,000 "confirmed" non-coding genes but only 10%-40% of them have been shown to have a function! That doesn't make any sense since the whole point of this debate is how to identify function.

Here's another bunch of arguments that Walter advances to demonstrate that a given sequence could be functional but not conserved. I'm going to quote the entire thing to give you a good sense of Walter's opinion.

A second limitation of a sequence-based conservation analysis of function is illustrated by recent insights from the functional probing of riboswitches. RNA structure, and hence dynamics and function, is generally established co-transcriptionally, as evident from, for example, bacterial ncRNAs including riboswitches and ribosomal RNAs, as well as the co-transcriptional alternative splicing of eukaryotic pre-mRNAs, responsible for the important, vast diversification of the human proteome across ∼200 cell types by excision of varying ncRNA introns. In the latter case, it is becoming increasingly clear that splicing regulation involves multiple layers synergistically controlled by the splicing machinery, transcription process, and chromatin structure. In the case of riboswitches, the interactions of the ncRNA with its multiple protein effectors functionally engage essentially all of its nucleotides, sequence-conserved or not, including those responsible for affecting specific distances between other functional elements. Consequently, the expression platform—equally important for the gene regulatory function as the conserved aptamer domain—tends to be far less conserved, because it interacts with the idiosyncratic gene expression machinery of the bacterium. Consequently, taking a riboswitch out of this native environment into a different cell type for synthetic biology purposes has been notoriously challenging. These examples of a holistic functioning of ncRNAs in their species-specific cellular context lay bare the limited power of pure sequence conservation in predicting all functionally relevant nucleotides.

I don't know much about riboswitches so I can't comment on that. As for alternative splicing, I assume he's suggesting that much of the DNA sequence for large introns is required for alternative splicing. That's just not correct. You can have effective alternative splicing with small introns. The only essential parts of introns sequences are the splice sites and a minimum amount of spacer.

Part of what he's getting at is the fact that you can have a functional transcript where the actual nucleotide sequence doesn't matter so it won't look conserved. That's correct. There are such sequences. For example, there seem to be some examples of enhancer RNAs, which are transcripts in the regulatory region of a gene where it's the act of transcription that's important (to maintain an open chromatin conformation, for example) and not the transcript itself. Similarly, not all intron sequences are junk because some spacer sequence in required to maintain a minimum distance between splice sites. All this is covered in Chapter 8 of my book ("Noncoding Genes and Junk RNA").

Are these examples enough to toss out the idea of sequence conservation as a proxy for function and assume that there are tens of thousands of such non-conserved genes in the human genome? I think not. The null hypothesis still holds. If you don't have any evidence of function then the transcript doesn't have a function—you may find a function at some time in the future but right now it doesn't have one. Some of the evidence for function could be sequence conservation but the absence of conservation is not an argument for function. If conservation doesn't work then you have to come up with some other evidence.

It's worth mentioning that, in the broadest sense, purifying selection isn't confined to nucleotide sequence. It can also take into account deletions and insertions. If a given region of the genome is deficient in random insertions and deletions then that's an indication of function in spite of the fact that the nucleotide sequence isn't maintained by purifying selection. The maintenance definition of function isn't restricted to sequence—it also covers bulk DNA and spacer DNA.

(This is a good time to bring up a related point. The absence of conservation (size or sequence) is not evidence of junk. Just because a given stretch of DNA isn't maintained by purifying selection does not prove that it is junk DNA. The evidence for a genome full of junk DNA comes from different sources and that evidence doesn't apply to every little bit of DNA taken individually. On the other hand, the maintenance function argument is about demonstrating whether a particular region has a function or not and it's about the proper null hypothesis when there's no evidence of function. The burden of proof is on those who claim that a transcript is functional.)

This brings us to the main point of Walter's objection to sequence conservation as an indication of function. You can see hints of it in the previous quotation where he talks about "holistic functioning of ncRNAs in their species-specific cellular context," but there's more ...

Some evolutionary biologists and philosophers have suggested that sequence conservation among genomes should be the primary, or perhaps only, criterion to identify functional genetic elements. This line of thinking is based on 50 years of success defining housekeeping and other genes (mostly coding for proteins) based on their sequence conservation. It does not, however, fully acknowledge that evolution does not actually select for sequence conservation. Instead, nature selects for the structure, dynamics and function of a gene, and its transcription and (if protein coding) translation products; as well as for the inertia of the same in pathways in which they are not involved. All that, while residing in the crowded environment of a cell far from equilibrium that is driven primarily by the relative kinetics of all possible interactions. Given the complexity and time dependence of the cellular environment and its environmental exposures, it is currently impossible to fully understand the emergent properties of life based on simple cause-and-effect reasoning.

The way I see it, his most important argument is that life is very complicated and we don't currently understand all of it's emergent properties. This means that he is looking for ways to explain the complexity that he expects to be there. The possibility that there might be several hundred thousand regulatory RNAs seems to fulfil this need so they must exist. According to Nils Walter, the fact that we haven't (yet) proven that they exist is just a temporary lull on the way to rigorous proof.

This seems to be a common theme among those scientists who share this viewpoint. We can see it in John Mattick's writings as well. It's as though the logic of having a genome full of regulatory RNA genes is so powerful that it doesn't require strong supporting evidence and can't be challenged by contradictory evidence. The argument seems somewhat mystical to me. Its proponents are making the a priori assumption that humans just have to be a lot more complicated than what "reductionist" science is indicating and all they have to do is discover what that extra layer of complexity is all about. According to this view, the idea that our genome is full of junk must be wrong because it seems to preclude the possibility that our genome could explain what it's like to be human.


Walter, N.G. (2024) Are non‐protein coding RNAs junk or treasure? An attempt to explain and reconcile opposing viewpoints of whether the human genome is mostly transcribed into non‐functional or functional RNAs. BioEssays:2300201. [doi: 10.1002/bies.202300201]

Monday, March 04, 2024

Nils Walter disputes junk DNA: (6) The C-value paradox

I'm discussing a recent paper published by Nils Walter (Walter, 2024). He is arguing against junk DNA by claiming that the human genome contains large numbers of non-coding genes.

This is the fifth post in the series. The first one outlines the issues that led to the current paper and the second one describes Walter's view of a paradigm shift/shaft. The third post describes the differing views on how to define key terms such as 'gene' and 'function.' In the fourth post I discuss his claim that differing opinions on junk DNA are mainly due to philosophical disagreements.

Sunday, March 03, 2024

Nils Walter disputes junk DNA: (5) What does the number of transcripts per cell tell us about function?

I'm discussing a recent paper published by Nils Walter (Walter, 2024). He is arguing against junk DNA by claiming that the human genome contains large numbers of non-coding genes.

This is the fifth post in the series. The first one outlines the issues that led to the current paper and the second one describes Walter's view of a paradigm shift. The third post describes the differing views on how to define key terms such as 'gene' and 'function.' The fourth post makes the case that differing views on junk DNA are mainly due to philosophical disagreements.

-Nils Walter disputes junk DNA: (1) The surprise

-Nils Walter disputes junk DNA: (2) The paradigm shaft

-Nils Walter disputes junk DNA: (3) Defining 'gene' and 'function'

-Nils Walter disputes junk DNA: (4) Different views of non-functional transcripts

Transcripts vs junk DNA

The most important issue, according to Nils Walter, is whether the human genome contains huge numbers of genes for lncRNAs and other types of regulatory RNAs. He doesn't give us any indication of how many of these potential genes he thinks exist or what percentage of the genome they cover. This is important since he's arguing against junk DNA but we don't know how much junk he's willing to accept.

There are several hundred thousand transcripts in the RNA databases. Most of them are identified as lncRNAs because they are bigger than 200 bp. Let's assume, for the sake of argument, that 200,000 of these transcripts have a biologically relevant function and therefore there are 200,000 non-coding genes. A typical size might be 1000 bp so these genes would take up about 6.5% of the genome. That's about 10 times the number of protein-coding genes and more than 6 times the amount of coding DNA.

That's not going to make much of a difference in the junk DNA debate since proponents of junk DNA argue that 90% of the genome is junk and 10% is functional. All of those non-coding genes can be accommodated within the 10%.

The ENCODE researchers made a big deal out of pervasive transcription back in 2007 and again in 2012. We can quibble about the exact numbers but let's say that 80% of the human is transcribed. We know that protein-coding genes occupy at least 40% percent of the genome so much of this pervasive transcription is introns. If all of the presumptive regulatory genes are located in the remaining 40% (i.e. none in introns), and the average size is 1000 bp, then this could be about 1.24 million non-coding genes. Is this reasonable? Is this what Nils Walter is proposing?

I think there's some confusion about the difference between large numbers of functional transcripts and the bigger picture of how much total junk DNA there is in the human genome. I wish the opponents of junk DNA would commit to how much of the genome they think is functional and what evidence they have to support that position.

But they don't. So instead we're stuck with debates about how to decide whether some transcripts are functional or junk.

What does transcript concentration tell us about function?

If most detectable transcripts are due to spurious transcription of junk DNA then you would expect these transcripts to be present at very low levels. This turns out to be true as Nils Walter admits. He notes that "fewer than 1000 lncRNAs are present at greater than one copy per cell."

This is a problem for those who advocate that many of these low abundance transcripts must be functional. We are familiar with several of the ad hoc hypotheses that have been advanced to get around this problem. John Mattick has been promoting them for years [John Mattick's new paradigm shaft].

Walter advances two of these excuses. First, he says that a critical RNA may be present at an average of one molecule per cell but it might be abundant in just one specialized cell in the tissue. Furthermore, their expression might be transient so they can only be detected at certain times during development and we might not have assayed cells at the right time. I assume he's advocating that there might be a short burst of a large number of these extremely specialized regulatory RNAs in these special cells.

As far as I know, there aren't many examples of such specialized gene expression. You would need at least 100,000 examples in order to make a viable case for function.

His second argument is that many regulatory RNAs are restricted to the nucleus where they only need to bind to one regulatory sequence to carry out their function. This ignores the mass action laws that govern such interactions. If you apply the same reasoning to proteins then you would only need one lac repressor protein to shut down the lac operon in E. coli but we've known for 50 years that this doesn't work in spite of the fact that the lac repressor association constant shows that it is one of the tightest binding proteins known [DNA Binding Proteins]. This is covered in my biochemistry textbook on pages 650-651.1

If you apply the same reasoning to mammalian regulatory proteins then it turns out that you need 10,000 transcription factor molecules per nucleus in order to ensure that a few specific sites are occupied. That's not only because of the chemistry of binary interactions but also because the human genome is full of spurious sites that resemble the target regulatory sequence [The Specificity of DNA Binding Proteins]. I cover this in my book in Chapter 8: "Noncoding Genes and Junk RNA" in the section titled "On the important properties of DNA-binding proteins" (pp. 200-204). I use the estrogen receptor as an example based on calculations that were done in the mid-1970s. The same principles apply to regulatory RNAs.

This is a disagreement based entirely on biochemistry and molecular biology. There aren't enough examples (evidence) to make the first argument convincing and the second argument makes no sense in light of what we know about the interactions between molecules inside of the cell (or nucleus).

Note: I can almost excuse the fact that Nils Walter ignores my book on junk DNA, my biochemistry textbook, and my blog posts, but I can't excuse the fact that his main arguments have been challenged repeatedly in the scientific literature. A good scientist should go out of their way to seek out objections to their views and address them directly.


1. In addition to the thermodynamic (equilibrium) problem, there's a kinetic problem. DNA binding proteins can find their binding sites relatively quickly by one dimensional diffusion—an option that's not readily available to regulatory RNAs [Slip Slidin' Along - How DNA Binding Proteins Find Their Target].

Walter, N.G. (2024) Are non‐protein coding RNAs junk or treasure? An attempt to explain and reconcile opposing viewpoints of whether the human genome is mostly transcribed into non‐functional or functional RNAs. BioEssays:2300201. [doi: 10.1002/bies.202300201]

Tuesday, February 27, 2024

Nils Walter disputes junk DNA: (2) The paradigm shaft

I'm discussing a recent paper published by Nils Walter (Walter, 2024). He is trying to explain the conflict between proponents of junk DNA and their opponents. His main focus is building a case for large numbers of non-coding genes.

This is the second post in the series. The first one outlines the issues that led to the current paper.

Nils Walter disputes junk DNA: (1) The surprise

Walter begins his defense of function by outlining a "paradigm shift" that's illustrated in Figure 1.

FIGURE 1: Assessment of the information content of the human genome ∼20 years before (left)[110] and after (right)[111] the Human Genome Project was preliminarily completed, drawn roughly to scale.[9] This significant progress can be described per Thomas Kuhn as a “paradigm shift” flanked by extended periods of “normal science”, during which investigations are designed and results interpreted within the dominant conceptual frameworks of the sub-disciplines.[9] Others have characterized this leap in assigning newly discovered ncRNAs at least a rudimentary (elemental) biochemical activity and thus function as excessively optimistic, or Panglossian, since it partially extrapolates from the known to the unknown.[75] Adapted from Ref. [9].

Reference #9 is a paper by John Mattick promoting a "Kuhnian revolution" in molecular biology. I've already discussed that paper as an example of a paradigm shaft, which is defined as a strawman "paradigm" set up to make your work look like revolutionary [John Mattick's new paradigm shaft]. Here's the figure from the Mattick paper.

The Walter figure is another example of a paradigm shaft—not to be confused with a real paradigm shift.1 Both pie charts misrepresent the amount of functional DNA since they don't show regulatory sequences, centromeres, telomeres, origins of replication, and SARS. Together, these account for more functional DNA than the functional regions of protein-coding genes and non-coding genes. We didn't know the exact amounts in 1980 but we sure knew they existed. I cover this in Chapter 5 of my book: "The Big Picture."

The 1980 view also implies, incorrectly, that we knew nothing about the non-functional component of the genome when, in fact, we knew by then that half of our genome was composed of transposon and viral sequences that were likely to be inactive, degenerate fragments of once active elements. (John Mattick's figure is better.)

The 2020 view implies that most intron sequences are functional since introns make up more than 40% of our genome but only about 3% of the pie chart. As far as I know, there's no evidence to support that claim. About 80% of the pie chart is devoted to transcripts identified as either small ncRNAs or lncRNAs. The implication is that the discovery of these RNAs represents a paradigm shift in our understanding of the genome.

The alternative explanation is that we've known since the late 1960s that most of the human genome is transcribed and that these transcripts—most of which turned out to be introns—are junk RNA that is confined to the nucleus and rapidly degraded. Advances in technology have enabled us to detect many examples of spurious transcripts that are present transiently at low levels in certain cells. I cover this in Chaper 8 of my book: "Noncoding Genes and Junk RNA.

The whole point of Nils Walter's paper is to defend the idea that most of these transcripts are functional and the alternative explanation is wrong. He's trying to present a balanced view of the controversy so he's well aware of the fact that some of us interpret the red part of the pie chart as spurious transcripts (junk RNA). If he's wrong, and I am right, then there's no paradigm shift.

You don't get to shift the paradigm all on our own, even if John Mattick is on your side. A true paradigm shift requires that the entire community of scientists changes their perspective and that hasn't happened.

In the next few posts we'll see whether Nils Walter can make a strong case that all those lncRNAs are functional. They cover about two-thirds of the genome in the pie chart. If we assume that the average length of these long transcripts is 2000 bp then this represents one million transcripts and potentially one million non-coding genes.


1. The term "paradigm shaft" was coined by reader Diogenes in a comment on this blog from many years ago.

Walter, N.G. (2024) Are non‐protein coding RNAs junk or treasure? An attempt to explain and reconcile opposing viewpoints of whether the human genome is mostly transcribed into non‐functional or functional RNAs. BioEssays:2300201. [doi: 10.1002/bies.202300201]

Nils Walter disputes junk DNA: (1) The surprise

Nils Walter attempts to present the case for a functional genome by reconciling opposing viewpoints. I address his criticisms of the junk DNA position and discuss his arguments in favor of large numbers of functional non-coding RNAs.

Nils Walter is Francis S. Collins Collegiate Professor of Chemistry, Biophysics, and Biological Chemistry at the University of Michigan in Ann Arbor (Michigan, USA). He works on human RNAs and claims that, "Over 75% of our genome encodes non-protein coding RNA molecules, compared with only <2% that encodes proteins." He recently published an article explaining why he opposes junk DNA.

Walter, N.G. (2024) Are non‐protein coding RNAs junk or treasure? An attempt to explain and reconcile opposing viewpoints of whether the human genome is mostly transcribed into non‐functional or functional RNAs. BioEssays:2300201. [doi: 10.1002/bies.202300201]

The human genome project's lasting legacies are the emerging insights into human physiology and disease, and the ascendance of biology as the dominant science of the 21st century. Sequencing revealed that >90% of the human genome is not coding for proteins, as originally thought, but rather is overwhelmingly transcribed into non-protein coding, or non-coding, RNAs (ncRNAs). This discovery initially led to the hypothesis that most genomic DNA is “junk”, a term still championed by some geneticists and evolutionary biologists. In contrast, molecular biologists and biochemists studying the vast number of transcripts produced from most of this genome “junk” often surmise that these ncRNAs have biological significance. What gives? This essay contrasts the two opposing, extant viewpoints, aiming to explain their basis, which arise from distinct reference frames of the underlying scientific disciplines. Finally, it aims to reconcile these divergent mindsets in hopes of stimulating synergy between scientific fields.

Tuesday, September 05, 2023

John Mattick's new paradigm shaft

John Mattick continues to promote the idea that he is leading a paradigm shift in molecular biology. He believes that he and his colleagues have discovered a vast world of noncoding genes responsible for intricate gene regulation in complex eukaryotes. The latest salvo was fired a few months ago in June 2023.

Mattick, J.S. (2023) A Kuhnian revolution in molecular biology: Most genes in complex organisms express regulatory RNAs. BioEssays:2300080. [doi: 10.1002/bies.202300080]

Thomas Kuhn described the progress of science as comprising occasional paradigm shifts separated by interludes of ‘normal science’. The paradigm that has held sway since the inception of molecular biology is that genes (mainly) encode proteins. In parallel, theoreticians posited that mutation is random, inferred that most of the genome in complex organisms is non-functional, and asserted that somatic information is not communicated to the germline. However, many anomalies appeared, particularly in plants and animals: the strange genetic phenomena of paramutation and transvection; introns; repetitive sequences; a complex epigenome; lack of scaling of (protein-coding) genes and increase in ‘noncoding’ sequences with developmental complexity; genetic loci termed ‘enhancers’ that control spatiotemporal gene expression patterns during development; and a plethora of ‘intergenic’, overlapping, antisense and intronic transcripts. These observations suggest that the original conception of genetic information was deficient and that most genes in complex organisms specify regulatory RNAs, some of which convey intergenerational information.

This paper is promoted by a video in which he explains why there's a Kuhnian revolution under way. This paper differs from most of his others on the same topic because Mattick now seems to have acquired some more knowledge of the mutation load argument and the neutral theory of evolution. Now he's not only attacking the so-called "protein centric" paradigm but also the Modern Synthesis. Apparently, a slew of "anomalies" are casting doubt on several old paradigms.

This is still a paradigm shaft but it's a bit more complicated than his previous versions (see: John Mattick's paradigm shaft). Now his "anomalies" include not only large numbers of noncoding genes but also the C-value paradox, repetitive DNA, introns, enhancers, gene silencing, the g-value enigma, pervasive transcription, transvection, and epigenetics. Also, he now seems to be aware of many of the arguments for junk DNA but not so aware that he can reference any of his critics.1 His challenges to the Modern Synthesis include paramutation which, along with epigenetics, violate the paradigm of the Moden Synthesis because of non-genetic inheritance.

But the heart of his revolution is still the discovery of massive numbers of noncoding genes that only he and a few of his diehard colleague can see.

The genomic programming of developmentally complex organisms was misunderstood for much of the last century. The mammalian genome harbors only ∼20 000 protein-coding genes, similar in number and with largely orthologous functions as those in other animals, including simple nematodes. On the other hand, the extent of non-protein-coding DNA increases with increasing developmental and cognitive complexity, reaching 98.5% in humans. Moreover, high throughput analyses have shown that the majority of the mammalian genome is differentially and dynamically transcribed during development to produce tens if not hundreds of thousands of short and long non-protein-coding RNAs that show highly specific expression patterns and subcellular locations.

The figure is supposed to show that by 2020 junk DNA had been eliminated and almost all of the mammalian genome is devoted to functional DNA—mostly in the form of noncoding genes. There's only one very tiny problem with this picture—it's not supported by any evidence that all those functional noncoding genes exist. This is still a paradigm shaft of the third kind (false paradigm, false overthrow, false data).


1. There are 124 references; Dawkins and ENCODE make the list along with 14 of his own papers. Most of the papers in my list of Required reading for the junk DNA debate are missing. The absence of Palazzo and Gregory (2023) is particularly noteworthy.

Palazzo, A.F., and Gregory, T.R. (2014) The Case for Junk DNA. PLoS Genetics, 10:e1004351. [doi: 10.1371/journal.pgen.1004351]>/p>

John Mattick's new dog-ass plot (with no dog)

John Mattick is famous for arguing that there's a correlation between genome size and complexity; notably in a 2004 Scientific American article (Mattick, 2004) [Genome Size, Complexity, and the C-Value Paradox ]. That's the article that has the famous Dog-Ass Plot (left) with humans representing the epitome of complexity and genome size. He claims that this correlation is evidence that most of the genomes of complex animals must have a function. He repeats this claim in a recent paper (see below).

Mattick, J.S. (2023) RNA out of the mist. TRENDS in Genetics 39:187-207. [doi: 10.1016/j.tig.2022.11.001,/p>

RNA has long been regarded primarily as the intermediate between genes and proteins. It was a surprise then to discover that eukaryotic genes are mosaics of mRNA sequences interrupted by large tracts of transcribed but untranslated sequences, and that multicellular organisms also express many long ‘intergenic’ and antisense noncoding RNAs (lncRNAs). The identification of small RNAs that regulate mRNA translation and half-life did not disturb the prevailing view that animals and plant genomes are full of evolutionary debris and that their development is mainly supervised by transcription factors. Gathering evidence to the contrary involved addressing the low conservation, expression, and genetic visibility of lncRNAs, demonstrating their cell-specific roles in cell and developmental biology, and their association with chromatin-modifying complexes and phase-separated domains. The emerging picture is that most lncRNAs are the products of genetic loci termed ‘enhancers’, which marshal generic effector proteins to their sites of action to control cell fate decisions during development.

Monday, September 04, 2023

John Mattick's paradigm shaft

Paradigm shifts are rare but paradigm shafts are common. A paradigm shaft is when a scientist describes a false paradigm that supposedly ruled in the past then shows how their own work overthrows that old (false) paradigm.1 In many cases, the data that presumably revolutionizes the field is somewhat exaggerated.

John Mattick's view of eukaryotic RNAs is a classic example of a paradigm shaft. At various times in the past he has declared that molecular biology used to be dominated by the Central Dogma, which, according to him, supported the concept that the only function of DNA was to produce proteins (Mattick, 2003; Morris and Mattick, 2014). More recently, he has backed off this claim a little bit by conceding that Crick allowed for functional RNAs but that proteins were the only molecules that could be involved in regulation. The essence of Mattick's argument is that past researchers were constrained by adherance to the paradigm that the only important functional molecules were proteins and RNA served only an intermediate role in protein synsthesis.

Monday, May 15, 2023

Chapter 8: Noncoding Genes and Junk RNA

I think there are no more than 5,000 noncoding genes but many scientists claim that there are tens of thousands of newly discovered noncoding genes. I describe the known noncoding genes (less than 1000) and explain why many of the transcripts detected are just junk RNA produced by spurious transcription. The presence of abundant noncoding genes will not solve the Deflated Ego Problem.

This chapter covers the misconceptions about the Central Dogma and how they are incorrectly used to try and discredit junk DNA. The views of John Mattick are explained and refuted. I end the chapter with a plea to adopt a worldview that can accommodate messy biochemistry and a sloppy genome that's full of junk DNA.

Click on this link to see more.

Chapter 8: NoncodingGenes and Junk RNA

Saturday, March 25, 2023

ChatGPT lies about junk DNA

I asked ChatGPT some questions about junk DNA and it made up a Francis Crick quotation and misrepresented the view of Susumu Ohno.

We have finally restored the Junk DNA article on Wikipedia. (It was deleted about ten years ago when Wikipedians decided that junk DNA doesn't exist.) One of the issues on Wikipedia is how to deal with misconceptions and misunderstandings while staying within the boundaries of Wikipedia culture. Wikipedians have an aversion to anything that looks like editorializing so you can't just say something like, "Nobody ever said that all non-coding DNA was junk." Instead, you have to find a credible reference to someone else who said that.

I've been trying to figure out how far the misunderstandings of junk DNA have spread so I asked ChatGPt (from OpenAI) again.

Thursday, December 22, 2022

Junk DNA, TED talks, and the function of lncRNAs

Most of our genome is transcribed but so far only a small number of these transcripts have a well-established biological function.

The fact that most of our genome is transcribed has been known for 50 years but that fact only became widely known with the publication of ENCODE's preliminary results in 2007 (ENCODE, 2007). The ENOCDE scientists referred to this as "pervasive transription" and this label has stuck.

By the end of the 1970s we knew that much of this transcription was due to introns. The latest data shows that protein coding genes and known noncoding genes occupy about 45% of the genome and most of that is intron sequences that are mostly junk. That leaves 30-40% of the genome that is transcribed at some point producing something like one million transcripts of unknown function.

Saturday, November 05, 2022

Nature journalist is confused about noncoding RNAs and junk

Nature Methods is one of the journals in Nature Portfolio published by Springer Nature. Its focus is novel methods in the life sciences.

The latest issue (October, 2022) highlights the issues with identifying functional noncoding RNAs and the editorial, Decoding noncoding RNAs, is quite good—much better than the comments in other journals. Here's the final paragraph.

Despite the increasing prominence of ncRNA, we remind readers that the presence of a ncRNA molecule does not always imply functionality. It is also possible that these transcripts are non-functional or products from, for example, splicing errors. We hope this Focus issue will provide researchers with practical advice for deciphering ncRNA’s roles in biological processes.

However, this praise is mitigated by the appearance of another article in the same journal. Science journalist, Vivien Marx has written a commentary with a title that was bound to catch my eye: How noncoding RNAs began to leave the junkyard. Here's the opening paragraph.

Junk. In the view of some, that’s what noncoding RNAs (ncRNAs) are — genes that are transcribed but not translated into proteins. With one of his ncRNA papers, University of Queensland researcher Tim Mercer recalls that two reviewers said, “this is good” and the third said, “this is all junk; noncoding RNAs aren’t functional.” Debates over ncRNAs, in Mercer’s view, have generally moved from ‘it’s all junk’ to ‘which ones are functional?’ and ‘what are they doing?’

This is the classic setup for a paradigm shaft. What you do is create a false history of a field and then reveal how your ground-breaking work has shattered the long-standing paradigm. In this case, the false history is that the standard view among scientists was that ALL noncoding RNAs were junk. That's nonsense. It means that these old scientists must have dismissed ribosomal RNA and tRNA back in the 1960s. But even if you grant that those were exceptions, it means that they knew nothing about Sidney Altman's work on RNAse P (Nobel Prize, 1989), or 7SL RNA (Alu elements), or the RNA components of spliceosomes (snRNAs), or PiWiRNAs, or snoRNAs, or microRNAs, or a host of regulatory RNAs that have been known for decades.

Knowledgeable scientists knew full well that there are many functional noncoding RNAS and that includes some that are called lncRNAs. As the editorial says, these knowledgeable scientists are warning about attributing function to all transcripts without evidence. In other words, many of the transcripts found in human cells could be junk RNA in spite of the fact that there are also many functional nonciding RNAs.

So, Tim Mercer is correct, the debate is over which ncRNAs are functional and that's the same debate that's been going on for 50 years. Move along folks, nothing to see here.

The author isn't going to let this go. She decides to interview John Mattick, of all people, to get a "proper" perspective on the field. (Tim Mercer is a former student of Mattick's.) Unfortunately, that perspective contains no information on how many functional ncRNAs are present and on what percentage of the genome their genes occupy. It's gonna take several hundred thousand lncRNA genes to make a significant impact on the amount of junk DNA but nobody wants to say that. With John Mattick you get a twofer: a false history (paradigm strawman) plus no evidence that your discoveries are truly revolutionary.

Nature Methods should be ashamed, not for presenting the views of John Mattick—that's perfectly legitimate—but for not putting them in context and presenting the other side of the controversy. Surely at this point in time (2022) we should all know that Mattick's views are on the fringe and most transcripts really are junk RNA?