Michael Denton and the Discovery Institute are promoting his new book, Evolution: Still a Theory in Crisis. I haven't yet read the book. I ordered from Amazon.ca and I won't get it until March.
Denton tries to explain the connection between the fine-tuning argument and structuralism in a recent post on Evolution News & Views: Natural Life: Cosmological Fine-Tuning as an Argument for Structuralism. I've dealt with structuralism already [What is "structuralism"?] so let's think about fine tuning.
The essence of the fine-tuning argument is that the basic laws of physics and chemistry are so precise that even slight changes would result in a universe where life is impossible. The focus is usually on the fundamental constants such as the speed of light and the charge on an electron. I don't know enough about physics to evaluate the argument that these are fine-tuned so I have to rely on physicists to inform me.
More Recent Comments
Monday, February 08, 2016
The Fermi Paradox: Are we alone in the universe?
All available evidence suggests that we are quite likely the only advanced life form in the Milky Way galaxy. Maybe our planet harbors the only life in the entire universe.
Can theology produce true knowledge?
Matthew Cobb wasn't happy with the way Denis Alexander reviewed Jerry Coyne's book. Recall that Denis Alexander is a biochemist at Cambridge University (UK) and we had a little debate a week or so ago [Is there a conflict between science and religion?]. His position is that there's no conflict between science and religion because a person who believes in god can always make their views conform to the discoveries of science. I didn't accept his premise—that gods exist—so we had a discussion about whether there's any evidence to support his belief in god.
If you believe in such a being then that conflicts with science as a way of knowing because you are believing in something without reliable evidence to support your belief. Scientists shouldn't do that and neither should any others who practice the scientific way of knowing. Denis Alexander thinks there are other, equally valid, ways of knowing but he wasn't able to offer any evidence that those other ways produce true knowledge.
Matthew Cob wrote a letter to the editor in which he asked, "I wonder if Dr Alexander, or indeed any reader, could provide an example of knowledge gained through theology, and above all tell us how they know that knowledge is true?" [see Matthew Cobb battles with the faithful over my book].
If you believe in such a being then that conflicts with science as a way of knowing because you are believing in something without reliable evidence to support your belief. Scientists shouldn't do that and neither should any others who practice the scientific way of knowing. Denis Alexander thinks there are other, equally valid, ways of knowing but he wasn't able to offer any evidence that those other ways produce true knowledge.
Matthew Cob wrote a letter to the editor in which he asked, "I wonder if Dr Alexander, or indeed any reader, could provide an example of knowledge gained through theology, and above all tell us how they know that knowledge is true?" [see Matthew Cobb battles with the faithful over my book].
Saturday, February 06, 2016
A DNA quiz
Jerry Coyne discovered a Quiz on DNA. He calls is a so-so quiz on DNA. He says that one question is really, really, dumb. I disagree, I think there are several dumb questions.
I tried it and got a score of 19/19 in just under four minutes. This is misleading since you have to get every question right before continuing on to the next question. I had to anticipate what the authors wanted in order to proceed.
Try the quiz yourself before reading any further. There are spoilers below!
I tried it and got a score of 19/19 in just under four minutes. This is misleading since you have to get every question right before continuing on to the next question. I had to anticipate what the authors wanted in order to proceed.
Try the quiz yourself before reading any further. There are spoilers below!
Tuesday, February 02, 2016
What is "structuralism"?
The Intelligent Design Creationists are promoting Michael Denton's new book Evolution: Still a Theory in Crisis. The new buzzword is "structuralism" and it's guaranteed to impress the creationist crowd because nobody understands what it means but it sounds very "sciency" and philosophical. Also, it's an attack on "Darwinism" and anything that refutes evolution has to be good.
You can watch Michael Denton explain structuralism ... it only takes a few minutes of your time.
You can watch Michael Denton explain structuralism ... it only takes a few minutes of your time.
Saturday, January 30, 2016
The most intellectual creationists explain why there are still Darwinists when Darwinism has been falsified
You are probably wondering why "Darwinism" persists after the creationists have thoroughly demonstrated that it is a failed theory. Lucky for you, the most intelligent and intellectual of all Intelligent Design Creationists, David Berlinski and Michael Denton, have gotten together to explain it in a short (15 mins) podcast.
It's moderated by David Klinghoffer who introduces it like this ... [Michael Denton and David Berlinski Discuss: How Does Darwinism Hang On?]
If you are interested in the conflict between Intelligent Design and science you owe it to yourself to see/hear the best they've got on their side.
ID the Future: More Berlinski and Denton.
It's moderated by David Klinghoffer who introduces it like this ... [Michael Denton and David Berlinski Discuss: How Does Darwinism Hang On?]
If the most brilliant Darwin critics, like David Berlinski and Michael Denton, are right, how then does Darwinism hang on? How does a failed theory maintain its grip on our science and on our culture? Why is there a sense of stalemate? On ID the Future, we posed these questions to Dr. Berlinski and Dr. Denton.
If you are interested in the conflict between Intelligent Design and science you owe it to yourself to see/hear the best they've got on their side.
ID the Future: More Berlinski and Denton.
Friday, January 29, 2016
Berlinski and Denton challenge Darwinism
It's fun to listen to the "ID the Future" podcasts. It shows us the very best of Intelligent Design Creationists. This time we get a twofer— David Berlinski and Michael Denton posing their most challenging questions to Darwinists. Here's how David Klinghoffer introduces the pair ... [Berlinski and Denton: If You Could Pose One Challenge to a Thoughtful Darwinist, What Would It Be?].
It's important to note that these are questions about the history of life. You could easily answer "I don't know" to both questions and it would not affect our understanding of evolution and common descent one iota. The answers have nothing to do with "Darwinism" per se and nothing to do with evolutionary theory (which is not Darwinism).
Listen to the very best minds in the Intelligent Design Creationist community ... and weep for them. This is all they've got.
Id the Future: Berlinski and Denton
You can always dream. While the evolutionist side in the Darwin debate is long on rhetoric and insults, serious debate or dialogue is woefully rare. But imagine you had the opportunity to sit down with a thoughtful, honest, well-informed Darwinist and pose one question or challenge. What would it be?Berlinski wants a detailed mathematical estimate of the number of mutations required to go from a land animal to a whale. Denton wants details on the formation of insect body plans.
I had the opportunity to pose that question to two of the most brilliant minds in the intelligent design community -- Michael Denton and David Berlinski. Take a well-spent 15 minutes and listen to their answers -- focusing respectively on the insect body plan and the enigma of whale evolution -- recorded as an episode of ID the Future.
It's important to note that these are questions about the history of life. You could easily answer "I don't know" to both questions and it would not affect our understanding of evolution and common descent one iota. The answers have nothing to do with "Darwinism" per se and nothing to do with evolutionary theory (which is not Darwinism).
Listen to the very best minds in the Intelligent Design Creationist community ... and weep for them. This is all they've got.
Id the Future: Berlinski and Denton
Thursday, January 28, 2016
"The Selfish Gene" turns 40
Richard Dawkins published The Selfish Gene 40 years ago and Matt Ridley notes the anniversary in a Nature article published today (Jan. 28, 2016): In retrospect: The selfish gene.
I don't remember when I first read it—probably the following year when the paperback version came out. I found it quite interesting but I was a bit put off by the emphasis on adaptation (taken from George Williams) and the idea of inclusive fitness (from W.D. Hamilton). I also didn't much like the distinction between vehicles and replicators and the idea that it was the gene, not the individual, that was the unit of selection ("selection" not "evolution").
I don't remember when I first read it—probably the following year when the paperback version came out. I found it quite interesting but I was a bit put off by the emphasis on adaptation (taken from George Williams) and the idea of inclusive fitness (from W.D. Hamilton). I also didn't much like the distinction between vehicles and replicators and the idea that it was the gene, not the individual, that was the unit of selection ("selection" not "evolution").
It is finally time to return to the problem with which we started, to the tension between individual organism and gene as rival candidates for the central role in natural selection...One way of sorting this whole matter out is to use the terms ‘replicator’ and ‘vehicle’. The fundamental units of natural selection, the basic things that survive or fail to survive, that form lineages of identical copies with occasional random mutations, are called replicators. DNA molecules are replicators. They generally, for reasons that we shall come to, gang together into large communal survival machines or ‘vehicles’.
Richard Dawkins
Is there a conflict between science and religion?
Some of you may not be able to come to our little "dialogue" tomorrow night. Don't worry, you can watch it on YouTube: Is There a Conflict Between Science and Religion?.
Where did the glucose come from?
Currently there are two distinct views on the origin of life. The majority of scientists think that life arose in a prebiotic soup of complex organic molecules. Most of them think this "warm little pond" was the ocean (!) and most of them have bought into the stories about asteroids and comets delivering complex organic molecules to create a soup of amino acids and sugars. Presumably, all the earliest forms of life had to do was to join together the amino acids to make proteins and hook up the nucleotides to make RNA. The energy for these reactions was derived from breaking down all the glucose in the sweet ocean.
Monday, January 25, 2016
Are the humanities a different way of knowing?
The answer is "no" according to Jerry Coyne and I agree with him [“Other ways of knowing”: Out of Africa].
What about music, art, and literature? I agree with him on that as well. Read Faith vs Fact.
What about music, art, and literature? I agree with him on that as well. Read Faith vs Fact.
James McGrath disproves atheism
James McGrath is a professor of religion at Butler University in Indianapolis, Indiana, USA.
He is one of those "sophisticated theologians" who dismiss modern atheists because we haven't spent years studying theology and because we haven't experienced the true existential angst of Jean-Paul Sartre. As a group, they hold to the position that the "New Atheists" are amateurs in the study of religion and their arguments can be easily dismissed.
He is one of those "sophisticated theologians" who dismiss modern atheists because we haven't spent years studying theology and because we haven't experienced the true existential angst of Jean-Paul Sartre. As a group, they hold to the position that the "New Atheists" are amateurs in the study of religion and their arguments can be easily dismissed.
Saturday, January 23, 2016
Richard Dawkins makes a mistake when describing why gene trees are evidence of evolution
Back in 2010, Richard Dawkins was answering questions on Reddit and one of the questions was "Out of all the evidence used to support the theory of evolution, what would you say is the strongest, most irrefutable single piece of evidence in support of the theory."
There are several ways to answer this question. Personally, I would take a minute to explain the difference between the "theory of evolution" and the history of life. I would point out that evolutionary theory includes things like Darwin's natural selection and there is overwhelming evidence proving that natural selection exists and operates today. The entire field of population genetics, which included other mechanisms of evolution such as random genetic drift, is massively supported by thousands of published papers in the scientific literature. There is absolutely no doubt at all that the current basic tenets of evolutionary theory are correct.
There are several ways to answer this question. Personally, I would take a minute to explain the difference between the "theory of evolution" and the history of life. I would point out that evolutionary theory includes things like Darwin's natural selection and there is overwhelming evidence proving that natural selection exists and operates today. The entire field of population genetics, which included other mechanisms of evolution such as random genetic drift, is massively supported by thousands of published papers in the scientific literature. There is absolutely no doubt at all that the current basic tenets of evolutionary theory are correct.
Friday, January 22, 2016
Confirmation bias
Confirmation bias is one of the major logical fallacies. When philosopher Chris DiCarlo and I were teaching a course on critical thinking we used to spend quite a bit of time on it because it's a very common trap. We are all guilty, from time to time, of focusing on just the evidence that confirms our belief and ignoring all the evidence that refutes it.
Some examples of confirmation bias are a bit more complicated than others and people typically mix together several different fallacious forms of argument. Here's an example from Denis Alexander's book Creation or Evolution (p. 213) that combines begging the question and confirmation bias.
Some examples of confirmation bias are a bit more complicated than others and people typically mix together several different fallacious forms of argument. Here's an example from Denis Alexander's book Creation or Evolution (p. 213) that combines begging the question and confirmation bias.
An undergraduate biochemistry lecture converts an atheist to Christianity
I'm reading Creation or Evolution: Do we have to choose? by Denis Alexander in preparation for our discussion next Friday at Wycliffe College on the University of Toronto downtown campus [Discussing the conflict between science and religion with Denis Alexander].
Denis Alexander is a biochemist at the University of Cambridge (UK). I thought I'd share one of the stories in his book.
I wonder how many I've converted?
Denis Alexander is a biochemist at the University of Cambridge (UK). I thought I'd share one of the stories in his book.
At the church I attend in Cambridge we baptised an undergraduate in the natural sciences who had come to a personal, saving faith in Christ from a completely atheistic background. As is usual in our church, just before being baptised she explained publicly to the whole congregation how she had become a Christian, telling us she had become convinced there must be a God while sitting through a standard biochemistry lecture, hearing the amazing story of how two meters (about six feet) of DNA are packaged into a single cell. Of course the lecturer was not talking in religious terms at all, but she described to us how the beauty of that engineering feat overwhelmed her as she listened, giving her the deep intuition there must be a God, so leading her onward in he personal pilgrimage to put her trust in this creator God through Christ. Truly natural theology at work!That got me thinking. I've been describing chromatin and packing in my textbooks since the first version in 1987. There must have been several hundred thousand students who have read my descriptions since then.
I wonder how many I've converted?
Thursday, January 21, 2016
Wednesday, January 20, 2016
Bryony Graham: another scientist who writes about the junk DNA controversy without doing her homework
I was searching for information about Craig Venter and his position on junk DNA when I stumbled upon this post by Bryony Graham: Why we still don’t have personalised medicine, 15 years after sequencing the human genome. She is a postdoc in Molecular Genetics at the University of Oxford so the subject is within her area of expertise.1
The post is from Dec. 1, 2015—that's only one month ago so she should be aware of all the facts concerning junk DNA.
If you are going to write about a subject in your area of expertise then it's reasonable to make yourself informed, especially if you know that the subject is controversial. For some strange reason, this common sense approach seems to be ignored when discussing genomes, evolution, and junk DNA. I don't know why some researchers think they know enough about a subject when all they've done (apparently) is read a few popular press reports.
Let's look at what Bryony Graham (@byrony_g) writes to see whether she is behaving like a proper scientist should behave when writing for the general public. It's worth noting that she was on the shortlist for the 2011 Max Perutz Science Writing Award so somebody must think she's a good science writer.
The post is from Dec. 1, 2015—that's only one month ago so she should be aware of all the facts concerning junk DNA.
If you are going to write about a subject in your area of expertise then it's reasonable to make yourself informed, especially if you know that the subject is controversial. For some strange reason, this common sense approach seems to be ignored when discussing genomes, evolution, and junk DNA. I don't know why some researchers think they know enough about a subject when all they've done (apparently) is read a few popular press reports.
Let's look at what Bryony Graham (@byrony_g) writes to see whether she is behaving like a proper scientist should behave when writing for the general public. It's worth noting that she was on the shortlist for the 2011 Max Perutz Science Writing Award so somebody must think she's a good science writer.
Not all junk DNA is rubbish
Tuesday, January 19, 2016
All about Craig
The sequence of the human genome was announced on June 26, 2000 although the actual sequence wasn't published until a year later. There were two sequences. One was the product of the International Human Genome Project led by Francis Collins who said,
The second sequence was from Celera Genomics, led by Craig Venter. It was mostly his genome, making him the second being to know his own instruction book ... right after God.
It took another seven years to finish and publish the complete sequence of all of Craig Venter's chromosomes. The paper was published in PLoS Biology (Levy et al., 2007) and highlighted in a Nature News article: All about Craig: the first 'full' genome sequence.
What's unique about this genome sequence—other than the fact that it'sGod's Craig Venter's—is that all 46 chromosomes were sequenced. In other words, enough data was generated to put together separate sequences of each pair of chromosomes. That produces some interesting data.
There were 4.1 million differences between homologous chromosomes (22 autosomes). 78% of these events were single nucleotide polymorphisms (SNPs). The rest were indels (insertions and deletions) and these accounted for 0.9 million nucleotides. Thus, indels made up 74% of the total number of variant nucleotide sequence.
In addition, there were 62 copy number variants (duplication) accounting for an additional 10Mb of variation between haploid sets of chromosomes. The total number of nucleotide differences is 13.9Mb when you add up all the indels, SNPs, and duplications. The two haploid genomes differ by about 0.5% by this calculation (total amount sequenced was 2,895Mb).
When the two copies of all annotated genes were compared, it turned out that 44% were heterozygous—the two copies were not identical.
Craig Venter's genome sequence differs from the composite human reference genome at 4,118,889 positions. Most of these were already known as variants in the human population but 31% were new variants (in 2007).
Venter has written about his genome sequence in A Life Decoded. He has variants in his APOE gene sequence that are associated with Alzheimer's and cardiovascular diseases. He has variants in his SORL1 that also make him at risk for Alzheimer's according to 2007 data. Just about everyone who gets their genomes sequenced will find variants that put them at greater risk for some genetic disease.
"It is humbling for me and awe-inspiring to realize that we have caught the first glimpse of our own instruction book, previously known only to God."The sequence was a composite of a number of individuals.
The second sequence was from Celera Genomics, led by Craig Venter. It was mostly his genome, making him the second being to know his own instruction book ... right after God.
It took another seven years to finish and publish the complete sequence of all of Craig Venter's chromosomes. The paper was published in PLoS Biology (Levy et al., 2007) and highlighted in a Nature News article: All about Craig: the first 'full' genome sequence.
What's unique about this genome sequence—other than the fact that it's
There were 4.1 million differences between homologous chromosomes (22 autosomes). 78% of these events were single nucleotide polymorphisms (SNPs). The rest were indels (insertions and deletions) and these accounted for 0.9 million nucleotides. Thus, indels made up 74% of the total number of variant nucleotide sequence.
In addition, there were 62 copy number variants (duplication) accounting for an additional 10Mb of variation between haploid sets of chromosomes. The total number of nucleotide differences is 13.9Mb when you add up all the indels, SNPs, and duplications. The two haploid genomes differ by about 0.5% by this calculation (total amount sequenced was 2,895Mb).
When the two copies of all annotated genes were compared, it turned out that 44% were heterozygous—the two copies were not identical.
Craig Venter's genome sequence differs from the composite human reference genome at 4,118,889 positions. Most of these were already known as variants in the human population but 31% were new variants (in 2007).
Venter has written about his genome sequence in A Life Decoded. He has variants in his APOE gene sequence that are associated with Alzheimer's and cardiovascular diseases. He has variants in his SORL1 that also make him at risk for Alzheimer's according to 2007 data. Just about everyone who gets their genomes sequenced will find variants that put them at greater risk for some genetic disease.
Levy, S., Sutton, G., Ng, P.C., Feuk, L., Halpern, A.L., Walenz, B.P., Axelrod, N., Huang, J., Kirkness, E.F., Denisov, G., Lin, Y., MacDonald, J.R., Pang, A.W.C., Shago, M., Stockwell, T.B., Tsiamouri, A., Bafna, V., Bansal, V., Kravitz, S.A., Busam, D.A., Beeson, K.Y., McIntosh, T.C., Remington, K.A., Abril, J.F., Gill, J., Borman, J., Rogers, Y.-H., Frazier, M.E., Scherer, S.W., Strausberg, R.L., and Venter, J.C. (2007) The diploid genome sequence of an individual human. PLoS Biol, 5(10), e254. [doi: 10.1371/journal.pbio.0050254]
Massimo Pigliucci tries to defend accommodationism (again): result is predictable
Massimo Pigliucci is an atheist who thinks that science and religion are compatible because they rule in different domains. He takes a very narrow view of "science"— one that excludes the work of historians and philosophers who are presumably using some other way of knowing. (He doesn't tell us what that is.)
I prefer the broad view of science as a way of knowing that relies on evidence, rational thinking, and healthy skepticism. This broad view of science is not universal—but it's not uncommon. In fact, Alan Sokel has defended this view of Massimo Pigiucci's own blog: [What is science and why should we care? — Part III]. According to this view, any attempt to gain knowledge should employ the scientific worldview. Historian and philosophers should follow this path if they hope to be successful. Pigliucci should know that there are different definitions and any discussion of the compatibility of science and religion must take these differences into account.
I prefer the broad view of science as a way of knowing that relies on evidence, rational thinking, and healthy skepticism. This broad view of science is not universal—but it's not uncommon. In fact, Alan Sokel has defended this view of Massimo Pigiucci's own blog: [What is science and why should we care? — Part III]. According to this view, any attempt to gain knowledge should employ the scientific worldview. Historian and philosophers should follow this path if they hope to be successful. Pigliucci should know that there are different definitions and any discussion of the compatibility of science and religion must take these differences into account.
Sunday, January 17, 2016
Origin of de novo genes in humans
We know quite a lot about the origin of new genes (Carvunis et al., 2012; Kaessman, 2010; Long et al., 2003; Long et al., 2013; Näsvall et al., 2012); Neme and Tautz, 2013; Schlötterer, 2015; Tautz and Domazet-Lošo (2011); Wu et al., 2011). Most of them are derived from gene duplication events and subsequent divergence. A smaller number are formed de novo from sequences that were not part of a gene in the ancestral species.
In spite of what you might have read in the popular literature, there are not a large number of newly formed genes in most species. Genes that appear to be unique to a single species are called "orphan" genes. When a genome is first sequenced there will always be a large number of potential orphan genes because the gene prediction software tilts toward false positives in order to minimize false negatives. Further investigation and annotation reduces the number of potential genes.
In spite of what you might have read in the popular literature, there are not a large number of newly formed genes in most species. Genes that appear to be unique to a single species are called "orphan" genes. When a genome is first sequenced there will always be a large number of potential orphan genes because the gene prediction software tilts toward false positives in order to minimize false negatives. Further investigation and annotation reduces the number of potential genes.
Nelson Lau responds to my criticism of his comments about junk DNA
I criticized Nelson Lau for comments he made about the junk DNA debate [Brandeis professor demonstrates his ignorance about junk DNA].
Here is his response,
Here is his response,
Dear Dr. Graur and Dr. Moran,
Thanks for reading the commentary on my university’s communication page, hastily written for brevity and digestibility by me and our science communication officer, Lawrence Goodman. I was originally hoping the piece could focus on my latest research, but it turned into this sort of general Q&A chat. The commentary was written rather quickly and meant for a general audience perusing Brandeis research, so it is obviously not a peer-reviewed scientific publication.
I am well aware of both your reputations as fiery critics and experts of evolutionary biology, and you have somewhat of a following on the internet. Some of your earlier blog posts have been entertaining and even on point regarding how big projects like ENCODE have over-hyped the functional proportions of our genomes. So, it does NOT surprise me one bit that I would become your latest vitriolic target in your posts here, and here.
Could I learn more from you two about evolutionary biology theory? Indeed, I could. Can we revise our Q&A commentary to be more scientifically accurate while still being digestible to a general audience? Perhaps, if we have the time and I survive my tenure review, we may do so and take your input into consideration. Why respond and risk another snarky post from you guys? I could care less about your trivial blog critiques when I’ve received plenty of grants and paper rejections that cut much deeper into my existence as a young academic struggling to survive when the academic track has never been more challenging (<10% grant success rates at NIH, NSF, CIHR, etc).
I’m responding to ask that both of you reflect on the message your posts are sending to students and postdocs. As a young scientist, having a chat with my university PR rep, I have to now think twice about two senior tenured professors slamming my scientific credibility on your internet soapbox without a single direct email to me. How passive-aggressive!
Your message is saying that Academic science even less inviting to young scientists as it is, with faculty positions and grants falling way short of demand, and the tough sacrifices every young scientist is already making for the craft that we love. If we condone this type of sniping behavior, why would any young scientist want to learn and discuss with the older scientists of your generation?
The Science Blogosphere, Twittersphere, and the Open Data movements are the next generation of platforms for science communication, and I commend you two for being vocal contributors to these platforms quite early on. However, I also recently wrote a guest post on Bjorn Bremb’s blog arguing that for open data and discussion to work, we scientists need to uphold decorum and civility.
A direct email from you to me expressing your scientific concerns of our commentary would have been a better way to go. I am willing to stand corrected. Your blog posts, however, are disappointing and appear petty to me. Let’s all set a better example here for our trainees.
If you wish to post this response verbatim on your blogs, go ahead, since I had thought of posting this response on your blog’s comments section. But to follow my own advice, I’ll try a direct email to you first. And if I don’t hear back from you, I may then ask my friend Bjorn to help me post this on his blog.
Thank you for reading this till the end,
Nelson
Nelson Lau, Ph.D.
Assistant Professor - Biology
Saturday, January 16, 2016
Brandeis professor demonstrates his ignorance about junk DNA
Judge Starling (Dan Graur) has alerted me to yet another young biologist who hasn't bothered to study the subject of genomes and junk DNA [An Ignorant Assistant Professor at @BrandeisU Explains “Junk DNA”].
This time it's Assistant Professor of Biology Nelson Lau. He studies Piwi proteins and PiRNAs.
Lau was interviewed by Lawrence Goodman, a science communication officer at Brandeis University: DNA dumpster diving. The subject is junk DNA and you will be astonished at how ignorant Nelson Lau is about a subject that's supposed to be important in his work.
How does this happen? Aren't scientists supposed to be up-to-date on the scientific literature before they pass themselves off as experts? How can an Assistant Professor make such blatantly false and misleading statements about his own area of research expertise? Has he never encountered graduate students, post-docs, or mentors who would have corrected his misconceptions?
Here's the introduction to the interview,
But there are certain standards that apply. The most important standard is that when you are challenging other experts you'd better be an expert yourself.
There was never, ever, a time when knowledgeable scientists said that all 98% of the DNA that wasn't part of a gene was junk. Not today, not twenty years ago (1996), and not 45 years ago.
There has never been at time since the 1960s when all non-gene DNA was a mystery. It certainly isn't a mystery today. If you don't know this then you better do some reading ... quickly. Google could be your friend, Prof. Lau, it will save you from further embarrassment. Search on "junk DNA" and read everything ... not just the entries that you agree with.
I added a bunch of links at the bottom of this post to help you out.
I strongly suspect that Prof. Lau has not done his homework and he doesn't know the Five Things You Should Know if You Want to Participate in the Junk DNA Debate.
What possible "deep purpose" could this DNA have?
We've got a serious problem here folks. There are scientists being hired at respectable universities who aren't keeping up with the scientific literature in their own field. How does this happen? Are there newly hired biology professors who don't understand evolution?
Eddy, S.R. (2012) The C-value paradox, junk DNA and ENCODE. Current Biology, 22:R898. [doi: 10.1016/j.cub.2012.10.002]
Niu, D. K., and Jiang, L. (2012) Can ENCODE tell us how much junk DNA we carry in our genome?. Biochemical and biophysical research communications 430:1340-1343. [doi: 10.1016/j.bbrc.2012.12.074]
Doolittle, W.F. (2013) Is junk DNA bunk? A critique of ENCODE. Proc. Natl. Acad. Sci. (USA) published online March 11, 2013. [PubMed] [doi: 10.1073/pnas.1221376110]
Graur, D., Zheng, Y., Price, N., Azevedo, R. B., Zufall, R. A., and Elhaik, E. (2013) On the immortality of television sets: "function" in the human genome according to the evolution-free gospel of ENCODE. Genome Biology and Evolution published online: February 20, 2013 [doi: 10.1093/gbe/evt028
Eddy, S.R. (2013) The ENCODE project: missteps overshadowing a success. Current Biology, 23:R259-R261. [10.1016/j.cub.2013.03.023]
Hurst, L.D. (2013) Open questions: A logic (or lack thereof) of genome organization. BMC biology, 11:58. [doi:10.1186/1741-7007-11-58]
Kellis, M., Wold, B., Snyder, M.P., Bernstein, B.E., Kundaje, A., Marinov, G.K., Ward, L.D., Birney, E., Crawford, G. E., and Dekker, J. (2014) Defining functional DNA elements in the human genome. Proc. Natl. Acad. Sci. (USA) 111:6131-6138. [doi: 10.1073/pnas.1318948111]
Morange, M. (2014) Genome as a Multipurpose Structure Built by Evolution. Perspectives in biology and medicine, 57:162-171. [doi: 10.1353/pbm.2014.000]
Palazzo, A.F., and Gregory, T.R. (2014) The Case for Junk DNA. PLoS Genetics, 10:e1004351. [doi: 10.1371/journal.pgen.1004351]
This time it's Assistant Professor of Biology Nelson Lau. He studies Piwi proteins and PiRNAs.
Lau was interviewed by Lawrence Goodman, a science communication officer at Brandeis University: DNA dumpster diving. The subject is junk DNA and you will be astonished at how ignorant Nelson Lau is about a subject that's supposed to be important in his work.
How does this happen? Aren't scientists supposed to be up-to-date on the scientific literature before they pass themselves off as experts? How can an Assistant Professor make such blatantly false and misleading statements about his own area of research expertise? Has he never encountered graduate students, post-docs, or mentors who would have corrected his misconceptions?
Here's the introduction to the interview,
Since the 1960s, it's largely been assumed that most of the DNA in the human genome was junk. It didn't encode proteins -- the main activity of our genes-- so it was assumed to serve no purpose. But Assistant Professor of Biology Nelson Lau is among a new generation of scientists questioning that hypothesis. His findings suggest we've been wrong about junk DNA and it may be time for a reappraisal. If we want to understand how our bodies work, we need to start picking through our genetic garbage.There's nothing wrong with being a "new generation" who questions the wisdom of their elders. That's what all scientists are supposed to do.
BrandeisNow sat down with Lau to ask him about his research.
But there are certain standards that apply. The most important standard is that when you are challenging other experts you'd better be an expert yourself.
First off, what is junk DNA?Dan has already addressed this response but let me throw in my own two cents.
About two percent of our genome carries out functions we know about, things like building our bones or keeping the heart beating. What the rest of our DNA does is still a mystery. Twenty years ago, for want of a better term, some scientists decided to call it junk DNA.
There was never, ever, a time when knowledgeable scientists said that all 98% of the DNA that wasn't part of a gene was junk. Not today, not twenty years ago (1996), and not 45 years ago.
There has never been at time since the 1960s when all non-gene DNA was a mystery. It certainly isn't a mystery today. If you don't know this then you better do some reading ... quickly. Google could be your friend, Prof. Lau, it will save you from further embarrassment. Search on "junk DNA" and read everything ... not just the entries that you agree with.
I added a bunch of links at the bottom of this post to help you out.
Is it really junk?It is possible that the extra DNA in our genome has an unknown deeper purpose but right now we have more than enough information to be confident that it's junk. You have to refute or discredit all the work that's been done in the past 40 years in order to be in the second camp.
There’s two camps in the scientific community, one that believes it doesn’t do anything and another that believes it’s there for a purpose.
And you’re in the second camp?
Yes. It's true that sometimes organisms carry around excess DNA, but usually it is there for a purpose. Perhaps junk DNA has been coopted for a deeper purpose that we have yet to fully unravel.
I strongly suspect that Prof. Lau has not done his homework and he doesn't know the Five Things You Should Know if You Want to Participate in the Junk DNA Debate.
What possible "deep purpose" could this DNA have?
Maybe when junk DNA moves to the right place in our DNA, this could cause better or faster evolution. Maybe when junk genes interacts with the non-junk ones, it causes a mutation to occur so humans can better adapt to changes in the environment.Most of the undergraduates who took my course could easily refute that argument. I'm guessing that undergraduates in biology at Brandeis aren't as smart. Or maybe they're just too complacent to challenge a professor?
We've got a serious problem here folks. There are scientists being hired at respectable universities who aren't keeping up with the scientific literature in their own field. How does this happen? Are there newly hired biology professors who don't understand evolution?
Eddy, S.R. (2012) The C-value paradox, junk DNA and ENCODE. Current Biology, 22:R898. [doi: 10.1016/j.cub.2012.10.002]
Niu, D. K., and Jiang, L. (2012) Can ENCODE tell us how much junk DNA we carry in our genome?. Biochemical and biophysical research communications 430:1340-1343. [doi: 10.1016/j.bbrc.2012.12.074]
Doolittle, W.F. (2013) Is junk DNA bunk? A critique of ENCODE. Proc. Natl. Acad. Sci. (USA) published online March 11, 2013. [PubMed] [doi: 10.1073/pnas.1221376110]
Graur, D., Zheng, Y., Price, N., Azevedo, R. B., Zufall, R. A., and Elhaik, E. (2013) On the immortality of television sets: "function" in the human genome according to the evolution-free gospel of ENCODE. Genome Biology and Evolution published online: February 20, 2013 [doi: 10.1093/gbe/evt028
Eddy, S.R. (2013) The ENCODE project: missteps overshadowing a success. Current Biology, 23:R259-R261. [10.1016/j.cub.2013.03.023]
Hurst, L.D. (2013) Open questions: A logic (or lack thereof) of genome organization. BMC biology, 11:58. [doi:10.1186/1741-7007-11-58]
Kellis, M., Wold, B., Snyder, M.P., Bernstein, B.E., Kundaje, A., Marinov, G.K., Ward, L.D., Birney, E., Crawford, G. E., and Dekker, J. (2014) Defining functional DNA elements in the human genome. Proc. Natl. Acad. Sci. (USA) 111:6131-6138. [doi: 10.1073/pnas.1318948111]
Morange, M. (2014) Genome as a Multipurpose Structure Built by Evolution. Perspectives in biology and medicine, 57:162-171. [doi: 10.1353/pbm.2014.000]
Palazzo, A.F., and Gregory, T.R. (2014) The Case for Junk DNA. PLoS Genetics, 10:e1004351. [doi: 10.1371/journal.pgen.1004351]
I'm going to London!
I've just registered for the Royal Society meeting on New trends in evolutionary biology: biological, philosophical and social science perspectives to be held on Nov. 7-9, 2016.
I'm looking forward to learning about all the paradigm-shifting work on evolutionary theory from the likes of Denis Noble and the Third Way crowd [Physiologists fall for the Third Way]. There may even be some famous members of the Altenberg 16 [More calls to extend the defunct Modern Synthesis].
I'm taking Ms. Sandwalk and hope to show her Down House. She loves old English houses.
She'll also be really excited to see Darwin's tomb in Westminster Abbey and tour the Natural History Museum. We'll make it a fun-filled week of science and evolution! Why don't you join us?
I'm looking forward to learning about all the paradigm-shifting work on evolutionary theory from the likes of Denis Noble and the Third Way crowd [Physiologists fall for the Third Way]. There may even be some famous members of the Altenberg 16 [More calls to extend the defunct Modern Synthesis].
I'm taking Ms. Sandwalk and hope to show her Down House. She loves old English houses.
She'll also be really excited to see Darwin's tomb in Westminster Abbey and tour the Natural History Museum. We'll make it a fun-filled week of science and evolution! Why don't you join us?
Friday, January 15, 2016
On the (false) significance of a liberal arts education
Joshua Kim posted an article on Inside Higher Education last month (Dec. 8, 2015). The article described his answers to some questions he was being asked in a interview [How Would You Answer These 9 Reimagine Education Questions?].
Here's one of the questions and his answer ...
Here's one of the questions and his answer ...
Question 4: Is there an innovation/idea/movement/methodology that excites you in terms of the future of education?
Yes. A liberal arts education.
Thursday, January 14, 2016
Model organisms and translational research
Ewan Birney (Genomic's Big Talker of ENCODE notoriety) has a new post called In defence of model organisms.
He brings up two points that are worth discussing.
What is a model organism?
There are two common definitions. Birney leans toward defining a model organism as one that models human biochemistry and physiology. This is a common definition. It emphasizes the meaning of "model" as "model of something."
He brings up two points that are worth discussing.
What is a model organism?
There are two common definitions. Birney leans toward defining a model organism as one that models human biochemistry and physiology. This is a common definition. It emphasizes the meaning of "model" as "model of something."
Rethinking medical education at the University of Toronto
Watch two medical educators from my Faculty of Medicine at the University of Toronto. They are being interviewed by Steve Paiken of The Agenda. They rightly deplore the traditional lecture style of learning that's common in my university but their solution is more online learning.
The real problem with medical education is that much of the first two years is based on the "memorize and regurgitate" model that we know is ineffective. The best way to change the system is to use evidence-based methods that emphasize student-based learning. The idea is to teach medical students how to access information and how to interpret it rather than have them memorize facts. When teaching biochemistry, for example, it's pointless to ask medical students to take an exam based on structures and pathways that they will forget the day after the exam.
These two physicians are in charge of reforming medical education. They want to please the students by creating a new way of teaching that emphasizes the way "millennials" want to learn. (Short online courses, no lectures.) You'll watch the entire show without hearing any references to the pedagogical literature and what's known to work. Is there any evidence that undergraduate medical students are experts on medical education? (Hint: ... no.)
If this is the wave of the future, I fear that future doctors are not going to be any more informed that the current crop. They will still not be capable of critical thinking.
The way we teach needs to change, but not this way.
The real problem with medical education is that much of the first two years is based on the "memorize and regurgitate" model that we know is ineffective. The best way to change the system is to use evidence-based methods that emphasize student-based learning. The idea is to teach medical students how to access information and how to interpret it rather than have them memorize facts. When teaching biochemistry, for example, it's pointless to ask medical students to take an exam based on structures and pathways that they will forget the day after the exam.
These two physicians are in charge of reforming medical education. They want to please the students by creating a new way of teaching that emphasizes the way "millennials" want to learn. (Short online courses, no lectures.) You'll watch the entire show without hearing any references to the pedagogical literature and what's known to work. Is there any evidence that undergraduate medical students are experts on medical education? (Hint: ... no.)
If this is the wave of the future, I fear that future doctors are not going to be any more informed that the current crop. They will still not be capable of critical thinking.
The way we teach needs to change, but not this way.
Targets, arrows, and the lottery fallacy
Sandwalk readers have been discussing the way Intelligent Design Creationists have been calculating probabilities [see Intelligent Design Creationists are very confused about epigenetics and Waiting for multiple mutations: Michael Lynch v. Michael Behe].
We've known for a long time that the most common mistake is assuming that there's only one solution to a problem. They see an end result, like a bacterial flagellum, or resistance to malaria, or the binding of two proteins, and assume that a few very specific mutations had to occur in a specific sequence in order to produce that result.
judmarc calls this the "lottery fallacy" and I think it's a good term [see lottery fallacy],
Do you see the fallacy? Just because we observe a complex adaptation or structure does NOT mean that it was specified or pre-ordained. There are certainly many different structures that could have evolved—most of them we never see because they didn't happen. And when a particular result is observed it doesn't mean that there was only one pathway (target) to producing that structure.
To continue the analogy—at the risk of abusing it—there may be hundreds of targets in the woods and most of them have very large bullseyes. Imagine you're out for a walk in the woods and you see that almost every tree has a big target with a large bullseye. You find an arrow stuck at the edge of one of the bullseyes and lots of arrows stuck in the trees, the ground, and parts of most of the targets outside of the central bullseyes. Would you write a book about how good the archer must have been?
We've known for a long time that the most common mistake is assuming that there's only one solution to a problem. They see an end result, like a bacterial flagellum, or resistance to malaria, or the binding of two proteins, and assume that a few very specific mutations had to occur in a specific sequence in order to produce that result.
judmarc calls this the "lottery fallacy" and I think it's a good term [see lottery fallacy],
This is of course what I like to call the "lottery fallacy." It's used by virtually every ID proponent to produce erroneously inflated probabilities against evolution.As it turns out, someone on Evolution News & Views (sic) just posted an excellent example of this fallacy [Intelligent Design on Target]. Here's what he/she/it says,
Lottery fallacy: The odds against any *particular individual* winning the PowerBall lottery are ~175 million to 1. But there were three winners just last night. That's because *someone* winning the PowerBall is not an especially rare occurrence. It happens every few weeks throughout the year.
In exactly the same way, Axe, Gauger, Behe, and the rest of the ID folks always base their math on the chances that a *particular* neutral or beneficial mutation will occur, and just as with the lottery, the chances of a *particular* outcome are utterly minuscule. The occurrence of *some* neutral or beneficial mutation, however, is, as with the lottery, so relatively common as to be completely unremarkable.
To summarize: ID proponents misuse probability math to make the common appear impossible.
In his second major treatise on design theory, No Free Lunch: Why Specified Complexity Cannot Be Purchased without Intelligence, William Dembski discusses searches and targets. One of his main points is that the ability to reach a target in a vast space of possibilities is an indicator of design. A sufficiently complex target that satisfies an independent specification, he argues, creates a pattern that, when observed, satisfies the Design Filter. There are rigorous mathematical and logical proofs of this concept in the book, but at one point, he uses an illustration even a child can understand.The unknown author included the image shown above in order to illustrate the point (Image: © Kagenmi / Dollar Photo Club).
Consider the case of an archer. Suppose an archer stands fifty meters from a large wall with a bow and arrow in hand. The wall, let us say, is sufficiently large that the archer cannot help but hit it. Now suppose each time the archer shoots an arrow at the wall, the archer paints a target around the arrow so that the arrow sits squarely in the bull's-eye. What can be concluded from this scenario? Absolutely nothing about the archer's ability as an archer. Yes, a pattern is being matched; but it is a pattern fixed only after the arrow has been shot. The pattern is thus purely ad hoc. [No Free Lunch, pp. 9-10, emphasis added.]Most people have experience with target shooting of some kind, whether with bows and arrows, guns (including squirt guns), snowballs, darts, or most sports like baseball, soccer, basketball, hockey, and football. Children laugh when they picture an archer who "couldn't even hit the broadside of a barn" and rushes up to the arrow and paints a bull's-eye around it. Grown-ups might compare that to a biologist looking at an irreducibly complex biological system and simply stating, "It evolved." In each of these cases, Dembski would say that since the pattern was not independently specified, therefore it is ad hoc.
Do you see the fallacy? Just because we observe a complex adaptation or structure does NOT mean that it was specified or pre-ordained. There are certainly many different structures that could have evolved—most of them we never see because they didn't happen. And when a particular result is observed it doesn't mean that there was only one pathway (target) to producing that structure.
To continue the analogy—at the risk of abusing it—there may be hundreds of targets in the woods and most of them have very large bullseyes. Imagine you're out for a walk in the woods and you see that almost every tree has a big target with a large bullseye. You find an arrow stuck at the edge of one of the bullseyes and lots of arrows stuck in the trees, the ground, and parts of most of the targets outside of the central bullseyes. Would you write a book about how good the archer must have been?
Tuesday, January 05, 2016
Intelligent Design Creationists are very confused about epigenetics
I've been trying to figure out why Intelligent Design Creationists are so excited about epigenetics. They seem to think it's going to overthrow everything we know about evolution (= "Darwinism"). That means, in their minds, that "naturalism" and "materialism" aren't sufficient to explain biology.
The logic escapes me.
Denyse O'Leary has added a new wrinkle in her latest post (as "News") on Uncomon Descent. She reveals a profound misunderstanding of epigenetics [Could epigenetics change perspectives on adoption?].
I'll just quote the relevant part and let you try and figure out whether Denyse represents mainstream Intelligent Design Creationism. 'Cause if she does, the movement is in far worse shape than even I imagined.
The logic escapes me.
Denyse O'Leary has added a new wrinkle in her latest post (as "News") on Uncomon Descent. She reveals a profound misunderstanding of epigenetics [Could epigenetics change perspectives on adoption?].
I'll just quote the relevant part and let you try and figure out whether Denyse represents mainstream Intelligent Design Creationism. 'Cause if she does, the movement is in far worse shape than even I imagined.
I remember one adoptive mother, taunted by a rebellious teenager who wanted to find her “real” mother, taking the girl by the shoulders and saying, “Look, I raised you from when you were seven days old; I supported you, sat with you in emergency rooms and juvenile court, laughed and cried with you, … and got you into a good school in the end. I don’t know who or where your birth mother is. But I do know this: I am the only ‘real mother’ you have ever had or ever will have. Look at me. Get used to it. It doesn’t GET better than this.”
I hope the kid smartened up. Meanwhile what if she discovers, when she has children, that their genome reflects in part traits she acquired growing up in the adoptive home? Maybe that would allay some of the sense of alienation.
Might epigenetics could provide some basis for understanding? Time will tell.
See also: Epigenetic change: Lamarck, wake up, you’re wanted in the conference room!
Monday, January 04, 2016
Answering two questions from Vincent Torley
Vincent Torley read a post by Jerry Coyne where Jerry wondered if Intelligent Design Creationism was in trouble because the Discovery Institute has lost Bill Dembski and Casey Luskin [Is the Discovery Institute falling apart?].
Torley disagrees, obviously, but he focuses on a couple of the scientific statements in Jerry Coyne's post and comes up with Two quick questions for Professor Coyne.
I hope Professor Coyne won't mind if I answer.
Before answering, let's take note of the fact that Vincent Torley has been convinced by the evidence that most of our genome is junk. I wonder how that will go over in the ID community?
Here's question #1 ...
Torley disagrees, obviously, but he focuses on a couple of the scientific statements in Jerry Coyne's post and comes up with Two quick questions for Professor Coyne.
I hope Professor Coyne won't mind if I answer.
Before answering, let's take note of the fact that Vincent Torley has been convinced by the evidence that most of our genome is junk. I wonder how that will go over in the ID community?
Here's question #1 ...
Tuesday, December 22, 2015
Waiting for multiple mutations: Michael Lynch v. Michael Behe
Casey Luskin is trying to help out a university student by describing some important ID contributions to science [No ID Research? Let's Help Out This Iowa State Student].
One of those contributions is a paper by Michael Behe and David Snoke published eleven years ago in Protein Science (Behe and Snoke, 2004). I described the result in a previous post: Waiting for multiple mutations: Intelligent Design Creationism v. population genetics.
If Behe & Snoke are correct then modern evolutionary theory cannot explain the formation of new functions that require multiple mutations.
Cassey Luskin is aware of the fact that this result has not been widely accepted. He mentions one specific criticism:
One of those contributions is a paper by Michael Behe and David Snoke published eleven years ago in Protein Science (Behe and Snoke, 2004). I described the result in a previous post: Waiting for multiple mutations: Intelligent Design Creationism v. population genetics.
If Behe & Snoke are correct then modern evolutionary theory cannot explain the formation of new functions that require multiple mutations.
Cassey Luskin is aware of the fact that this result has not been widely accepted. He mentions one specific criticism:
In 2008, Behe and Snoke's would-be critics tried to refute them in the journal Genetics, but found that to obtain only two specific mutations via Darwinian evolution "for humans with a much smaller effective population size, this type of change would take > 100 million years." The critics admitted this was "very unlikely to occur on a reasonable timescale."He's referring to a paper by Durrett and Schmidt (2008). Those authors examined the situation where one transcription factor binding site was disrupted by mutation and another one nearby is created by mutation. The event requires two prespecified coordinated mutations.
Waiting for multiple mutations: Intelligent Design Creationism v. population genetics
Casey Luskin is worried about university students. Apparently, they aren't getting enough correct information about intelligent design. Luskin uses the example of a student named Michael Heckle at Iowa State University. Mr. Heckel said; "So far, there has been no research done by intelligent design advocates that has led to any sort of scientific discovery."
This happens to be a true statement but Casey Luskin takes exception in a blog post that appeared the other day on Evolution News & Views (sic) [No ID Research? Let's Help Out This Iowa State Student].
This happens to be a true statement but Casey Luskin takes exception in a blog post that appeared the other day on Evolution News & Views (sic) [No ID Research? Let's Help Out This Iowa State Student].
Saturday, December 19, 2015
Here's why Alain Beaudet, President of the Canadian Institutes of Health Research, should resign
The Canadian Institutes of Health Research (CIHR) is the main source of research funding for Canadian health researchers, including those doing basic research like most of the researchers in my biochemistry department.
A few years ago, CIHR decided to revamp the process of applying for and obtaining research grants. They did this without taking into consideration the wishes of most applicants. (They did "consult," but consulting isn't the same as listening.)
The result has been a disaster. Most researchers are confused and discouraged by the new process and there's great fear that the results of the next competitions will be harmful to basic research and harmful to new investigators.
But even before the new rules came into play the funding of basic, curiosity-motivated, science was taking a major hit. Many mid-career basic researchers at the University of Toronto have lost their grants or are struggling to make do with a lot less money. This is partly due to a lack of money in the system but it's been exacerbated by a deliberate shift in priorities under the previous Conservative government of former Prime Minister Stephen Harper.
These are some of the reasons why Canadian researchers have been calling for Alain Beuadet to resign [Support basic research with new leaders at the Canadian Institutes of Health Research (CIHR)].
A few years ago, CIHR decided to revamp the process of applying for and obtaining research grants. They did this without taking into consideration the wishes of most applicants. (They did "consult," but consulting isn't the same as listening.)
The result has been a disaster. Most researchers are confused and discouraged by the new process and there's great fear that the results of the next competitions will be harmful to basic research and harmful to new investigators.
But even before the new rules came into play the funding of basic, curiosity-motivated, science was taking a major hit. Many mid-career basic researchers at the University of Toronto have lost their grants or are struggling to make do with a lot less money. This is partly due to a lack of money in the system but it's been exacerbated by a deliberate shift in priorities under the previous Conservative government of former Prime Minister Stephen Harper.
These are some of the reasons why Canadian researchers have been calling for Alain Beuadet to resign [Support basic research with new leaders at the Canadian Institutes of Health Research (CIHR)].
Thursday, December 17, 2015
Joe Hanson tells us about evolution
Joe Hanson Ph.D. (Biology) of It's Okay To Be Smart is posting a series of videos on evolution. They're called The 12 Days of Evolution.
The first one is "What Is Evolution Anyway?" You won't surprised to learn that Joe Hanson conflates "evolution" with "natural selection" and fails to mention the most important features of evolution [see What Is Evolution]. You WILL be surprised to learn that Jerry Coyne has the same objections I do! [Twelve Days of Evolution: #1: What’s evolution?]
We need to do a much better job of educating the general public about the meaning of evolution but first we need to educate the teachers. It's okay to be smart but it's not okay to just pretend to be smart.
The first one is "What Is Evolution Anyway?" You won't surprised to learn that Joe Hanson conflates "evolution" with "natural selection" and fails to mention the most important features of evolution [see What Is Evolution]. You WILL be surprised to learn that Jerry Coyne has the same objections I do! [Twelve Days of Evolution: #1: What’s evolution?]
We need to do a much better job of educating the general public about the meaning of evolution but first we need to educate the teachers. It's okay to be smart but it's not okay to just pretend to be smart.
Strolling around slopes and valleys in the adaptive landscape
Another article about evolution and the attainment of perfection has appeared. This one was published by Nathaniel Scharping on the Discover website [Could Evolution Ever Yield a ‘Perfect’ Organism?].
The article focuses on a recent paper from Richard Lenski's group at Michigan State University (Lenski et al., 2015). Lenski's group asked a different question. They wanted to know whether there was a limit to the increase in fitness in their evolving E. coli populations in the Long-Term Evolution Experiment (LTEE). It's a different question than whether evolution can select for a "perfect" organism because Lenski and his collaborators understand modern evolutionary theory. They know that mutations causing small fitness increases are beyond the reach of natural selection in their evolving populations and they know that deleterious mutations can be fixed by random genetic drift.
They know that real evolving populations can never reach the summit of an adaptive peak or, if they do, they can never stay there.
The article focuses on a recent paper from Richard Lenski's group at Michigan State University (Lenski et al., 2015). Lenski's group asked a different question. They wanted to know whether there was a limit to the increase in fitness in their evolving E. coli populations in the Long-Term Evolution Experiment (LTEE). It's a different question than whether evolution can select for a "perfect" organism because Lenski and his collaborators understand modern evolutionary theory. They know that mutations causing small fitness increases are beyond the reach of natural selection in their evolving populations and they know that deleterious mutations can be fixed by random genetic drift.
They know that real evolving populations can never reach the summit of an adaptive peak or, if they do, they can never stay there.
Intelligent design explanations and speculations have all been refuted, discredited, or shown to be unnecessary
Intelligent Design Creationism is a movement based on bad science. Every single one of their positive, science-like, claims about ID have been refuted, or discredited, or shown to be completely unnecessary in the face of robust evolutionary explanations. Some of them have the distinction of being unnecessary AND refuted AND discredited (e.g irreducible complexity).
In addition to a small number of claims in support of ID, the proponents of Intelligent Design Creationism also advance dozens and dozens of arguments against evolution. In fact, this is by far the main activity of most adherents to the movement. Some of their arguments focus on legitimate scientific controversies. They are legitimate criticisms of some aspects of evolution but, even then, ID proponents often misrepresent and/or misunderstand the science behind the controversy (e.g. junk DNA).
However, the vast majority of their attacks on evolution are just as bad as their attempts to build a positive case for intelligent design. A disturbingly large number of such attacks exhibit a profound ignorance of science and how it works. In particular—surprisingly—they are ignorant of evolution. The movement is full of kooks. It will never become a credible source of information unless it purges itself by getting rid of the kooks.
Speaking of kooks,1 Casey Luskin has been publishing a series of articles on the Kitzmiller v. Dover trial that was decided ten years ago. Some of the articles make valid points but the latest one is a joke: Ten Myths About Dover: #4, "The Dover Ruling Refuted Intelligent Design".
You should read the article. It's a remarkable example of apologetics and why lawyers shouldn't try and explain science. While it's true that Judge Jones said lots of things we could quibble about, the big-picture take-home lesson from the trial is correct. No ID explanation stood up to the scrutiny of science. They were all shown to be either irrelevant or wrong.
That's why none of them should be presented in science class except as examples of bad science and faulty scientific reasoning.2
In addition to a small number of claims in support of ID, the proponents of Intelligent Design Creationism also advance dozens and dozens of arguments against evolution. In fact, this is by far the main activity of most adherents to the movement. Some of their arguments focus on legitimate scientific controversies. They are legitimate criticisms of some aspects of evolution but, even then, ID proponents often misrepresent and/or misunderstand the science behind the controversy (e.g. junk DNA).
However, the vast majority of their attacks on evolution are just as bad as their attempts to build a positive case for intelligent design. A disturbingly large number of such attacks exhibit a profound ignorance of science and how it works. In particular—surprisingly—they are ignorant of evolution. The movement is full of kooks. It will never become a credible source of information unless it purges itself by getting rid of the kooks.
Speaking of kooks,1 Casey Luskin has been publishing a series of articles on the Kitzmiller v. Dover trial that was decided ten years ago. Some of the articles make valid points but the latest one is a joke: Ten Myths About Dover: #4, "The Dover Ruling Refuted Intelligent Design".
You should read the article. It's a remarkable example of apologetics and why lawyers shouldn't try and explain science. While it's true that Judge Jones said lots of things we could quibble about, the big-picture take-home lesson from the trial is correct. No ID explanation stood up to the scrutiny of science. They were all shown to be either irrelevant or wrong.
That's why none of them should be presented in science class except as examples of bad science and faulty scientific reasoning.2
1. Luskin won't even admit that Young Earth Creationism is absurd.
2. In my opinion, they SHOULD be discussed in class since it's important to teach critical thinking and that requires that you directly confront common misconceptions.
Tuesday, December 15, 2015
How many different proteins are made in a typical human cell?
There are about 20,000 protein-coding genes in the human genome. Protein products for about 18,000 of these genes have been detected in at least one human tissue (Kim et al, 2015; Wilhelm et al., 2015) [see How many proteins do humans make?].
About 10,000 of these proteins are present in all cells (Wilhelm et al., 2015) and somewhere between 1500 and 2000 are derived from genes that are essential in the average human cell (Blomen et al., 2015; Wang et al, 2015; Hart et al., 2015) [see How many human protein-coding genes are essential for cell survival?].
Let's assume there are about 10,000 protein-coding genes that are expressed in a typical human cell. Does this mean that there are only 10,000 different proteins in those cells? The answer is "no" but the differences are often subtle. The activities of some proteins, for example, are regulated by covalent modification so a typical cell will contain different versions of the protein: some are modified and some are not (e.g. phosphorylated and non-phosphorylated). These would be genuine versions of different proteins although you probably wouldn't want to make a fuss about it.
In some cases, there are various intermediates produced during protein synthesis. For example, some proteins destined for the mitochondria have an N-terminal tag that's cleaved when the proteins reach their destination. There are two different versions of the protein but, again, this isn't really a big deal. We should really only count the steady-state, terminal, stage of processing and modification.
Similarly, there are proteins that are glycosylated in various ways and cells will always contain intermediates including non-glycosylated versions that have just entered the ER. These don't count as different versions of the protein.
Some genes are alternatively spliced to give proteins that have different internal amino acid sequences. These are genuinely different proteins produced from the same gene.
If you add up all the genuinely different versions of proteins produced from 10,000 protein-coding genes, how many proteins are present in a typical human cell?
Here's a standard answer given in a recent news article in Nature (Savage, 2015)
That means ten different versions of each of the subunits of pyruvate dehydrogenase and RNA polymerase. It means ten different versions of triose phosphate isomerase and each of the ribosomal proteins. There should be ten different versions of actin and ten different versions of cytochrome c.
This seems very unlikely to me.
Discuss.
(There may be a few genes that have thousands of different variants, although I'm skeptical. In that case there may be 100,000 different proteins in a human cell but surely this is misleading even if it's accurate?)
About 10,000 of these proteins are present in all cells (Wilhelm et al., 2015) and somewhere between 1500 and 2000 are derived from genes that are essential in the average human cell (Blomen et al., 2015; Wang et al, 2015; Hart et al., 2015) [see How many human protein-coding genes are essential for cell survival?].
Let's assume there are about 10,000 protein-coding genes that are expressed in a typical human cell. Does this mean that there are only 10,000 different proteins in those cells? The answer is "no" but the differences are often subtle. The activities of some proteins, for example, are regulated by covalent modification so a typical cell will contain different versions of the protein: some are modified and some are not (e.g. phosphorylated and non-phosphorylated). These would be genuine versions of different proteins although you probably wouldn't want to make a fuss about it.
In some cases, there are various intermediates produced during protein synthesis. For example, some proteins destined for the mitochondria have an N-terminal tag that's cleaved when the proteins reach their destination. There are two different versions of the protein but, again, this isn't really a big deal. We should really only count the steady-state, terminal, stage of processing and modification.
Similarly, there are proteins that are glycosylated in various ways and cells will always contain intermediates including non-glycosylated versions that have just entered the ER. These don't count as different versions of the protein.
Some genes are alternatively spliced to give proteins that have different internal amino acid sequences. These are genuinely different proteins produced from the same gene.
If you add up all the genuinely different versions of proteins produced from 10,000 protein-coding genes, how many proteins are present in a typical human cell?
Here's a standard answer given in a recent news article in Nature (Savage, 2015)
The human body contains roughly 20,000 genes that are capable of producing proteins. Each gene can produce multiple forms of a protein, and these in turn can be decorated with several post-translational modifications: they can have phosphate or methyl groups attached, or be joined to lipids or carbohydrates, all of which affect their function. “The number of potential molecules you can make from one gene is huge,” says Bernhard Küster, who studies proteomics at the Technical University of Munich in Germany. “It's very hard to estimate, but I wouldn't be surprised to have in one cell type 100,000 or more different proteins.”I suspect that Küster is one of those scientists who think that almost all human protein-coding genes are alternatively spliced to yield several different proteins in each cell. He has to imagine that there are, on average, ten different versions of a protein produced from each gene that's expressed in a typical cell.
That means ten different versions of each of the subunits of pyruvate dehydrogenase and RNA polymerase. It means ten different versions of triose phosphate isomerase and each of the ribosomal proteins. There should be ten different versions of actin and ten different versions of cytochrome c.
This seems very unlikely to me.
Discuss.
(There may be a few genes that have thousands of different variants, although I'm skeptical. In that case there may be 100,000 different proteins in a human cell but surely this is misleading even if it's accurate?)
Blomen, V.A., Májek, P., Jae, L.T., Bigenzahn, J.W., Nieuwenhuis, J., Staring, J., Sacco, R., van Diemen, F.R., Olk, N., and Stukalov, A. (2015) Gene essentiality and synthetic lethality in haploid human cells. Science, 350:1092-1096. [doi: 10.1126/science.aac7557 ]
Hart, T., Chandrashekhar, M., Aregger, M., Steinhart, Z., Brown, K.R., MacLeod, G., Mis, M., Zimmermann, M., Fradet-Turcotte, A., and Sun, S. (2015) High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities. Cell 163:1515-1526. [doi: 10.1016/j.cell.2015.11.015]
Kim, M.-S., Pinto, S.M., Getnet, D., Nirujogi, R.S., Manda, S.S., Chaerkady, R., Madugundu, A.K., Kelkar, D.S., Isserlin, R., Jain, S., Thomas, J.K., Muthusamy, B., Leal-Rojas, P., Kumar, P., Sahasrabuddhe, N.A., Balakrishnan, L., Advani, J., George, B., Renuse, S., Selvan, L.D.N., Patil, A.H., Nanjappa, V., Radhakrishnan, A., Prasad, S., Subbannayya, T., Raju, R., Kumar, M., Sreenivasamurthy, S.K., Marimuthu, A., Sathe, G.J., Chavan, S., Datta, K.K., Subbannayya, Y., Sahu, A., Yelamanchi, S.D., Jayaram, S., Rajagopalan, P., Sharma, J., Murthy, K.R., Syed, N., Goel, R., Khan, A.A., Ahmad, S., Dey, G., Mudgal, K., Chatterjee, A., Huang, T.-C., Zhong, J., Wu, X., Shaw, P.G., Freed, D., Zahari, M.S., Mukherjee, K.K., Shankar, S., Mahadevan, A., Lam, H., Mitchell, C.J., Shankar, S.K., Satishchandra, P., Schroeder, J.T., Sirdeshmukh, R., Maitra, A., Leach, S.D., Drake, C.G., Halushka, M.K., Prasad, T.S.K., Hruban, R.H., Kerr, C.L., Bader, G.D., Iacobuzio-Donahue, C.A., Gowda, H., and Pandey, A. (2014) A draft map of the human proteome. Nature, 509:575-581. [doi: 10.1038/nature13302]
Savage, N. (2015) High-protein research. Nature 527:S6-S7. [doi: 10.1038/527S6a]
Wang, T., Birsoy, K., Hughes, N.W., Krupczak, K.M., Post, Y., Wei, J.J., Lander, E. S., and Sabatini, D.M. (2015) Identification and characterization of essential genes in the human genome. Science, 350:1096-1101. [doi: 10.1126/science.aac7041]
Wilhelm, M., Schlegl, J., Hahne, H., Gholami, A.M., Lieberenz, M., Savitski, M.M., Ziegler, E., Butzmann, L., Gessulat, S., Marx, H., Mathieson, T., Lemeer, S., Schnatbaum, K., Reimer, U., Wenschuh, H., Mollenhauer, M., Slotta-Huspenina, J., Boese, J.-H., Bantscheff, M., Gerstmair, A., Faerber, F., and Kuster, B. (2014) Mass-spectrometry-based draft of the human proteome. Nature, 509:582-587. [doi: 10.1038/nature13319]
Monday, December 14, 2015
Did Michael Behe say that astrology was scientific in Kitzmiller v. Dover?
Yes he did. But it doesn't mean what you think it means according to Casey Luskin [Ten Myths About Dover: #8, "Michael Behe Admitted that ID Is No More Scientific than Astrology"
I agree with Casey Luskin. During the trial, Behe was asked to define scientific theory and of course he adopted the broad view of science. He said, "Under my definition, a scientific theory is a proposed explanation which focuses or points to physical, observable data and logical inferences."
Here's the exchange that took place during the trial [Dover: Day 11].
What we don't do is tell astrologers that they are entitled to believe whatever they want because astrology is not science and therefore we can't make a scientific statement about whether it's correct or not.
Intelligent Design Creationism is bad science. So is most of evolutionary psychology and some of genomics. So is the attempt to find god in a football helmet [The God Helmet: Your Brain on Religion].
It's disingenuous to make fun of Behe's testimony without understanding that the real issue is epistemology and the demarcation problem. Behe's view of science is perfectly legitimate but it didn't jibe with what the plaintiffs were trying to establish during the trial. They wanted to prove that ID isn't science and the best way to do that was to show that something can't be science unless it's true. In other words, science isn't a "way of knowing," it's the end result.
What does this mean? It means that every discredited attempt to explain something using science as a way of knowing becomes "not science" with hindsight. All those people who tried to show that genes were proteins were wrong so it means that what they were doing is not science. It means that of the two sides arguing about junk DNA, one of them will be wrong so, at some time in the future, their current activities will be seen as "not science."
Isn't that bizarre?
I agree with Casey Luskin. During the trial, Behe was asked to define scientific theory and of course he adopted the broad view of science. He said, "Under my definition, a scientific theory is a proposed explanation which focuses or points to physical, observable data and logical inferences."
Here's the exchange that took place during the trial [Dover: Day 11].
Q In any event, in your expert report, and in your testimony over the last two days, you used a looser definition of "theory," correct?I mostly agree with Behe.1 Astrology was an attempt to explain human behaviors by relating them to the position of the Earth on the day you were born. There is no connection. So today we think of astrology as bad science. It's not true that the stars determine your behavior and whenever we make this claim to an astologist we make sure to point out that the evidence is against it.
A I think I used a broader definition, which is more reflective of how the word is actually used in the scientific community.
Q But the way you define scientific theory, you said it's just based on your own experience; it's not a dictionary definition, it's not one issued by a scientific organization.
A It is based on my experience of how the word is used in the scientific community.
Q And as you said, your definition is a lot broader than the NAS definition?
A That's right, intentionally broader to encompass the way that the word is used in the scientific community.
Q Sweeps in a lot more propositions.
A It recognizes that the word is used a lot more broadly than the National Academy of Sciences defined it.
Q In fact, your definition of scientific theory is synonymous with hypothesis, correct?
A Partly -- it can be synonymous with hypothesis, it can also include the National Academy's definition. But in fact, the scientific community uses the word "theory" in many times as synonymous with the word "hypothesis," other times it uses the word as a synonym for the definition reached by the National Academy, and at other times it uses it in other ways.
Q But the way you are using it is synonymous with the definition of hypothesis?
A No, I would disagree. It can be used to cover hypotheses, but it can also include ideas that are in fact well substantiated and so on. So while it does include ideas that are synonymous or in fact are hypotheses, it also includes stronger senses of that term.
Q And using your definition, intelligent design is a scientific theory, correct?
A Yes.
Q Under that same definition astrology is a scientific theory under your definition, correct?
A Under my definition, a scientific theory is a proposed explanation which focuses or points to physical, observable data and logical inferences. There are many things throughout the history of science which we now think to be incorrect which nonetheless would fit that -- which would fit that definition. Yes, astrology is in fact one, and so is the ether theory of the propagation of light, and many other -- many other theories as well.
Q The ether theory of light has been discarded, correct?
A That is correct.
Q But you are clear, under your definition, the definition that sweeps in intelligent design, astrology is also a scientific theory, correct?
A Yes, that's correct. And let me explain under my definition of the word "theory," it is -- a sense of the word "theory" does not include the theory being true, it means a proposition based on physical evidence to explain some facts by logical inferences. There have been many theories throughout the history of science which looked good at the time which further progress has shown to be incorrect. Nonetheless, we can't go back and say that because they were incorrect they were not theories. So many many things that we now realized to be incorrect, incorrect theories, are nonetheless theories.
Q Has there ever been a time when astrology has been accepted as a correct or valid scientific theory, Professor Behe?
A Well, I am not a historian of science. And certainly nobody -- well, not nobody, but certainly the educated community has not accepted astrology as a science for a long long time. But if you go back, you know, Middle Ages and before that, when people were struggling to describe the natural world, some people might indeed think that it is not a priori -- a priori ruled out that what we -- that motions in the earth could affect things on the earth, or motions in the sky could affect things on the earth.
What we don't do is tell astrologers that they are entitled to believe whatever they want because astrology is not science and therefore we can't make a scientific statement about whether it's correct or not.
Intelligent Design Creationism is bad science. So is most of evolutionary psychology and some of genomics. So is the attempt to find god in a football helmet [The God Helmet: Your Brain on Religion].
It's disingenuous to make fun of Behe's testimony without understanding that the real issue is epistemology and the demarcation problem. Behe's view of science is perfectly legitimate but it didn't jibe with what the plaintiffs were trying to establish during the trial. They wanted to prove that ID isn't science and the best way to do that was to show that something can't be science unless it's true. In other words, science isn't a "way of knowing," it's the end result.
What does this mean? It means that every discredited attempt to explain something using science as a way of knowing becomes "not science" with hindsight. All those people who tried to show that genes were proteins were wrong so it means that what they were doing is not science. It means that of the two sides arguing about junk DNA, one of them will be wrong so, at some time in the future, their current activities will be seen as "not science."
Isn't that bizarre?
1. He should have been defining "science" not "scientific theory." That's the fault of his lawyers who failed to make this point during his direct testimony.
Did Kitzmiller v. Dover kill Intelligent Design Creationism?
The 10th anniversary of Judge Jone's decision in Kitzmiller v. Dover is coming up on Dec. 20, 2015. See the post at Panda's Thumb: Kitzmas is Coming!.
ID proponents are also marking the event in various ways. If you are interested in the discussion, you should read the posts on Evolution News & Views covering the Ten Myths about Dover. The first one (#10) is Ten Myths About Dover: #10, "The Intelligent Design Movement Died After the Dover Decision".
Of course the ID movement didn't die after Kitzmiller v. Dover. From the outside (i.e. not in the USA) it seems to be as strong as ever. State legislatures all over America are still trying to suppress the teaching of evolution and promote creationist perspectives. The movement has captured the attention of many (most?) prominent politicians and much of the American public still believes that scientists are wrong about evolution.
ID proponents are also marking the event in various ways. If you are interested in the discussion, you should read the posts on Evolution News & Views covering the Ten Myths about Dover. The first one (#10) is Ten Myths About Dover: #10, "The Intelligent Design Movement Died After the Dover Decision".
Of course the ID movement didn't die after Kitzmiller v. Dover. From the outside (i.e. not in the USA) it seems to be as strong as ever. State legislatures all over America are still trying to suppress the teaching of evolution and promote creationist perspectives. The movement has captured the attention of many (most?) prominent politicians and much of the American public still believes that scientists are wrong about evolution.
Friday, December 11, 2015
A "synthetic" view of the Modern Synthesis
I just re-read a 1997 paper by Francis Ayala and Walter Fitch (Ayala and Fitch, 1997). The opening two paragraphs describe the Modern Synthesis of Evolution in a very interesting way. The emphasis is on the history and the contributions of Theodosius Dobzhansky (1900-1975) but it makes another point that I'd like to mention.
I strongly recommend that we abandon that term and use "evolutionary theory" instead. Furthermore, we should be careful about using the term "Modern Synthesis" unless we are specifically referring to the version of evolutionary theory that was popular in the 1950s.
It's true that Ayala and Fitch would like to retain the term "Synthetic Theory" to refer to the expanded version of the Modern Synthesis. They want to emphasize that there have been important extensions to the original Modern Synthesis but these are merely add-ons. Darwin's basic idea of evolution by natural selection remains at the core of their version of the "Theory of Evolution."
That seems like a very pluralistic view but I'd like to note several things about this paper.
Theodosius Dobzhansky (1900–1975) was a key author of the Synthetic Theory of Evolution, also known as the Modern Synthesis of Evolutionary Theory, which embodies a complex array of biological knowledge centered around Darwin’s theory of evolution by natural selection couched in genetic terms. The epithet ‘‘synthetic’’ primarily alludes to the artful combination of Darwin’s natural selection with Mendelian genetics, but also to the incorporation of relevant knowledge from biological disciplines. In the 1920s and 1930s several theorists had developed mathematical accounts of natural selection as a genetic process. Dobzhansky’s Genetics and the Origin of Species, published in 1937 (1), refashioned their formulations in language that biologists could understand, dressed the equations with natural history and experimental population genetics, and extended the synthesis to speciation and other cardinal problems omitted by the mathematicians.The important point here is that evolutionary theory is a complex synthesis of sub-theories, hypotheses, and observations. While it may be convenient to refer to this synthetic version as the "Theory of Evolution," it's also very misleading.
The current Synthetic Theory has grown around that original synthesis. It is not just one single hypothesis (or theory) with its corroborating evidence, but a multidisciplinary body of knowledge bearing on biological evolution, an amalgam of well-established theories and working hypotheses, together with the observations and experiments that support accepted hypotheses (and falsify rejected ones), which jointly seek to explain the evolutionary process and its outcomes. These hypotheses, observations, and experiments often originate in disciplines such as genetics, embryology, zoology, botany, paleontology, and molecular biology. Currently, the ‘‘synthetic’’ epithet is often omitted and the compilation of relevant knowledge is simply known as the Theory of Evolution. This is still expanding, just like one of those ‘‘holding’’ business corporations that have grown around an original enterprise, but continue incorporating new profitable enterprises and discarding unprofitable ones.
I strongly recommend that we abandon that term and use "evolutionary theory" instead. Furthermore, we should be careful about using the term "Modern Synthesis" unless we are specifically referring to the version of evolutionary theory that was popular in the 1950s.
It's true that Ayala and Fitch would like to retain the term "Synthetic Theory" to refer to the expanded version of the Modern Synthesis. They want to emphasize that there have been important extensions to the original Modern Synthesis but these are merely add-ons. Darwin's basic idea of evolution by natural selection remains at the core of their version of the "Theory of Evolution."
That seems like a very pluralistic view but I'd like to note several things about this paper.
- The word "drift" appears only once and it's in the form "neutral drift." There's no mention of random genetic drift as a mechanism of evolution that's been incorporated into the synthetic version of evolutionary theory.
- The word "neutral" appears five times but "Neutral Theory" is not mentioned. The authors do concede that "the neutral-selection controversy rages on."
- There are 50 references but not a single paper by Mootoo Kimura is mentioned. They do, however, discuss molecular clocks and discuss whether amino acid substitutions are really of "no adaptive consequence."
- There's a fairly well-known paper by Gould and Lewontin that might be relevant in a discussion about the synthetic version modern evolutionary theory. They neglected to mention it.
Ayala, F.J., and Fitch, W.M. (1997) Genetics and the origin of species: an introduction. Proc. Natl. Acad. Sci. (USA) 94:7691-7697. [PDF]
Gould, S.J., and Lewontin, R.C. (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. Roy. Soc. (London) Series B. Biological Sciences 205:581-598. [doi: 10.1098/rspb.1979.0086]
Subscribe to:
Posts
(
Atom
)