New genes can arise by gene duplication. These events are quite common on an evolutionary time scale. In the current human population, for example, there are about 100 examples of polymorphic gene duplications. These are cases where some of us have two copies of a gene while others have only one copy (Zarrie et al., 2015). Humans have gained about 700 new genes by duplication and fixation since we diverged from chimpanzees (Demuth et al., 2006). The average rate of duplication in eukaryotes is about 0.01 events per gene per million years and the half-life of a duplicated gene is about 4 million years (Lynch and Conery, 2003).
The typical fate of these duplicated genes is to "die" by mutation or deletion. There are five possible fates [see Birth and death of genes in a hybrid frog genome]:- One of the genes will "die" by acquiring fatal mutations. It becomes a pseudogene.
- One of the genes will die by deletion.
- Both genes will survive because having extra gene product (e.g. protein) will be beneficial (gene dosage).
- One of the genes acquires a new beneficial mutation that creates a new function and at the same time causes loss of the old function (neofunctionalization). Now both genes are retained by positive selection and the complexity of the genome has increased.
- Both genes acquire mutations that diminish function so the genome now needs two copies of the gene in order to survive (subfunctionalization).