More Recent Comments
Wednesday, February 12, 2020
Happy Darwin Day! 2020
Friday, February 07, 2020
The Function Wars Part VI: The problem with selected effect function
The term "Function Wars" refers to the debate over the meaning of 'function,' especially in the context of junk DNA.1 That debate intensified in 2012 after the ENCODE publicity campaign that tried to redefine function to mean anything they want as long as it refutes junk DNA. This is the sixth in a series of posts exploring the debate and why it's important, or not. Links to the other five posts can be found at the bottom or this post.
The world is not inhabited exclusively by fools and when a subject arouses intense interest and debate, as this one has, something other than semantics is usually at stake.Stephen Jay Gould (1982)Much of the discussion seems like quibbling over semantics but I'm reminded of a similar debate over the mode of evolution: is it gradual or punctuated? As Gould pointed out in 1982, there's a serious issue underlying the debate—an issue that shouldn't get lost in bickering over the meaning of 'gradualistic.' The same warning applies here. It's important to determine how much of the human genome is junk and that requires an understanding of what we mean by junk DNA. However, it's easy to get distracted by focusing on the exact meaning of the word 'function' instead of looking at the big picture.
Friday, January 31, 2020
lncRNA nonsense from Los Alamos
Kim, D.N., Thiel, B.C., Mrozowich, T., Hennelly, S.P., Hofacker, I.L., Patel, T.R., Sanbonmatsu, K.Y. (2020) Zinc-finger protein CNBP alters the 3-D structure of lncRNA Braveheart in solution. Nat. Commun. 11:148 [doi: 10.1038/s41467-019-13942-4]The authors point out in their paper that lncRNAs are difficult to work with and the 3D structures of only a small number have been characterized. There's nothing in the paper about the problems associated with determining the functions of lncRNAs and nothing about the number of lncRNAs except for this brief opening statement: "Long non-coding RNAs (lncRNAs) constitute a significant fraction of the transcriptome ..."
Tuesday, January 14, 2020
The Three Domain Hypothesis: RIP
The original idea was promoted by Carl Woese and his colleagues in the early 1980s. It was based on the discovery of archaebacteria as a distinct clade that was different from other bacteria (eubacteria). It also became clear that some eukaryotic genes (e.g. ribosomal RNA) were more closely related to archaebacterial genes and the original data indicated that eukaryotes formed another distinct group separate from either the archaebacteria or eubacteria. This gave rise to the Three Domain Hypothesis where each of the groups, bacteria (Eubacteria), archaebacteria (Archaea), and eukaryotes (Eucarya, Eukaryota), formed a separate clade that contained multiple kingdoms. These clades were called Domains.
Wednesday, January 08, 2020
Are pseudogenes really pseudogenes?
I'm about to refute this ridiculous stance but first we need a little background.
Wednesday, January 01, 2020
Remember MOOCs?
Tuesday, December 31, 2019
Are introns mostly junk?
- The size and sequence of introns in related species are not conserved and almost all of the sequences are evolving at the rate expected for neutral substitutions and fixation by drift.
- Many species have lost introns or reduced their lengths drastically suggesting that the presence of large introns can be detrimental in some cases (probably large populations).
- After decades of searching, there are very few cases where introns and/or parts of introns have been shown to be essential.
- Researchers routinely construct intronless versions of eukaryotic genes and they function normally when re-inserted into the genome.
- Intron sequences are often littered with transposon and viral sequences that have inserted into the intron and this is not consistent with the idea that intron sequences are important.
- About 98% of the introns in modern yeast (Saccharomyces cerevisiae) have been eliminated during evolution form a common ancestor that probably had about 18,000 introns [Yeast loses its introns]. This suggests that there was no selective pressure to retain those introns over the past 100 million years.
- About 245/295 of the remaining introns in yeast have been artificially removed by researchers who are constructing an artificial yeast genome suggesting that over 80% of the introns that survived evolutionary loss are also junk [Yeast loses its introns].
Sunday, December 15, 2019
The evolution of citrate synthase
acetyl-CoA + H2O + oxaloacetate → citrate + HS-CoA + H+We usually think of this reaction in terms of energy production since acetyl-CoA is the end product of glycolysis and the citric acid cycle produces substrates that enter the electron transport system leading to production of ATP. However, it's important to keep in mind that the enzyme also catalyzes the reverse reaction.
Friday, December 13, 2019
The "standard" view of junk DNA is completely wrong
For decades, the miniscule protein-coding portion of the genome was the primary focus of medical research. The sequencing of the human genome showed that only ∼2% of our genes ultimately code for proteins, and many in the scientific community believed that the remaining 98% was simply non-functional “junk” (Mattick and Makunin, 2006; Slack, 2006). However, the ENCODE project revealed that the non-protein coding portion of the genome is copied into thousands of RNA molecules (Djebali et al., 2012; Gerstein et al., 2012) that not only regulate fundamental biological processes such as growth, development, and organ function, but also appear to play a critical role in the whole spectrum of human disease, notably cancer (for recent reviews, see Adams et al., 2017; Deveson et al., 2017; Rupaimoole and Slack, 2017).Cell is a high-impact, refereed journal so we can safely assume that this paper was reviewed by reputable scientists. This means that the view expressed in the paragraph above did not raise any alarm bells when the paper was reviewed. The authors clearly believe that what they are saying is true and so do many other reputable scientists. This seems to be the "standard" view of junk DNA among scientists who do not understand the facts or the debate surrounding junk DNA and pervasive transcription.
Slack, F.J. and Chinnaiyan, A.M. (2019) The Role of Non-coding RNAs in Oncology. Cell 179:1033-1055 [doi: 10.1016/j.cell.2019.10.017]
Here are some of the obvious errors in the statement.
- The sequencing of the human genome did NOT show that only ~2% of our genome consisted of coding region. That fact was known almost 50 years ago and the human genome sequence merely confirmed it.
- No knowledgeable scientist ever thought that the remaining 98% of the genome was junk—not in 1970 and not in any of the past fifty years.
- The ENCODE project revealed that much of our genome is transcribed at some time or another but it is almost certainly true that the vast majority of these low-abundance, non-conserved, transcripts are junk RNA produced by accidental transcription.
- The existence of noncoding RNAs such as ribosomal RNA and tRNA was known in the 1960s, long before ENCODE. The existence of snoRNAs, snRNAs, regulatory RNAs, and various catalytic RNAS were known in the 1980s, long before ENCODE. Other RNAs such as miRNAs, piRNAS, and siRNAs were well known in the 1990s, long before ENCODE.
Monday, October 21, 2019
The evolution of de novo genes
The important question is whether the evolution of de novo genes is a common event or a rare event.
Tuesday, September 24, 2019
How many protein-coding genes in the human genome? (2)
It's difficult to know how many protein-coding genes there are in the human genome because there are several different ways of counting and the counts depend on what criteria are used to identify a gene. Last year I commented on a review by Abascal et al. (2018) that concluded there were somewhere between 19,000 and 20,000 protein-coding genes. Those authors discussed the problems with annotation and pointed out that the major databases don't agree on the number of gene [How many protein-coding genes in the human genome?].
Wednesday, September 11, 2019
Gerald Fink promotes a new definition of a gene
This is the 2019 Killian lecture at MIT, delivered in April 2019 by Gerald Fink. Fink is an eminent scientist who has done excellent work on the molecular biology of yeast. He was director of the prestigious Whitehead Institute at MIT from 1990-2001. With those credentials you would expect to watch a well-informed presentation of the latest discoveries in molecular genetics. Wouldn't you?
Sunday, September 08, 2019
Contingency, selection, and the long-term evolution experiment
I'm a big fan of Richard Lenski's long-term evolution experiment (LTEE) and of Zachary Blount's work in particular. [Strolling around slopes and valleys in the adaptive landscape] [On the unpredictability of evolution and potentiation in Lenski's long-term evolution experiment] [Lenski's long-term evolution experiment: the evolution of bacteria that can use citrate as a carbon source]
The results of the LTEE raise some interesting questions about evolution. The Lenski experiment began with 12 (almost) identical cultures and these have now "evolved" for 31 years and more than 65,000 generations. All of the cultures have diverged to some extent and one of them (and only one) has developed the ability to use citrate as a carbon source. Many of the cultures exhibit identical, or very similar, mutations that have reached significant frequencies, or even fixation, in the cultures.Several other laboratory evolution experiments have been completed or are underway in various labs around the world. The overall results are relevant to a discussion about the role of contingency and accident in the history of life [see Evolution by Accident]. Is it true that if you replay the tape of life the results will be quite different? [Replaying life's tape].
Friday, August 30, 2019
Evolution by Accident
v1.43 ©2006 Laurence A. Moran
This essay has been transferred here from an old server that has been decommissioned.Modern concepts of evolutionary change are frequently attacked by those who find the notions of randomness, chance, and accident to be highly distasteful. Some of these critics are intelligent design creationists and their objections have been refuted elsewhere. In this essay I'm more concerned about my fellow evolutionists who go to great lengths to eliminate chance and accident from all discussions about the fundamental causes of evolution. This is my attempt to convince them that evolution is not as predictable as they claim. I was originally stimulated to put my ideas down on paper when I read essays by John Wilkins [Evolution and Chance] and Loren Haarsma [Chance from a Theistic Perspective] on the TalkOrigins Archive.
The privilege of living beings is the possession of a structure and of a mechanism which ensures two things: (i) reproduction true to type of the structure itself, and (ii) reproduction equally true to type, of any accident that occurs in the structure. Once you have that, you have evolution, because you have conservation of accidents. Accidents can then be recombined and offered to natural selection to find out if they are of any meaning or not.
Jacques Monod (1974) p.394The main conclusion of this essay is that a large part of ongoing evolution is determined by stochastic events that might as well be called "chance" or "random." Furthermore, a good deal of the past history of life on Earth was the product of chance events, or accidents, that could not have been predicted. When I say "evolution by accident" I'm referring to all these events. This phrase is intended solely to distinguish "accidental" evolution from that which is determined by non-random natural selection. I will argue that evolution is fundamentally a random process, although this should not be interpreted to mean that all of evolution is entirely due to chance or accident. The end result of evolution by accident is modern species that do not look designed.
Tuesday, August 27, 2019
First complete sequence of a human chromosome
A paper announcing the first complete sequence of a human chromosome has recently been posted on the bioRxiv server.
Miga, K. H., Koren, S., Rhie, A., Vollger, M. R., Gershman, A., Bzikadze, A., Brooks, S., Howe, E., Porubsky, D., Logsdon, G. A., et al. (2019) Telomere-to-telomere assembly of a complete human X chromosome. bioRxiv, 735928. doi: [doi: 10.1101/735928]
Abstract: After nearly two decades of improvements, the current human reference genome (GRCh38) is the most accurate and complete vertebrate genome ever produced. However, no one chromosome has been finished end to end, and hundreds of unresolved gaps persist. The remaining gaps include ribosomal rDNA arrays, large near-identical segmental duplications, and satellite DNA arrays. These regions harbor largely unexplored variation of unknown consequence, and their absence from the current reference genome can lead to experimental artifacts and hide true variants when re-sequencing additional human genomes. Here we present a de novo human genome assembly that surpasses the continuity of GRCh38, along with the first gapless, telomere-to-telomere assembly of a human chromosome. This was enabled by high-coverage, ultra-long-read nanopore sequencing of the complete hydatidiform mole CHM13 genome, combined with complementary technologies for quality improvement and validation. Focusing our efforts on the human X chromosome, we reconstructed the ∼2.8 megabase centromeric satellite DNA array and closed all 29 remaining gaps in the current reference, including new sequence from the human pseudoautosomal regions and cancer-testis ampliconic gene families (CT-X and GAGE). This complete chromosome X, combined with the ultra-long nanopore data, also allowed us to map methylation patterns across complex tandem repeats and satellite arrays for the first time. These results demonstrate that finishing the human genome is now within reach and will enable ongoing efforts to complete the remaining human chromosomes.