We know a lot more about the human genome than we did when the draft sequences were published 20 years ago. One of the most important discoveries is the recognition and extent of true functional sequences in the genome. Genes are one example of such functional sequence but only a minor component (about 1.4%). Most of the functional regions of the genome are not genes.
Here's a list of functional DNA in our genome other than the functional part of genes.
- Centromeres: There are 24 different centromeres and the average size is four million base pairs. Most of this is repetitive DNA and it adds up to about 3% of the genome. The total amount of centromeric DNA ranges from 2%-10% in different individuals. It's unlikely that all of the centromeric DNA is essential; about 1% seems to be a good estimate.
- Telomeres: Telomeres are repetivie DNA sequences at the ends of chromosomes. They are required for the proper replication of DNA and they take up about 0.1% of the genome sequence.
- Origins of replication: DNA replication begins at origins of replication. The size of each origin has not been established with certainlty but it's safe to assume that 100 bp is a good estimate. There are about 100,000 origin sequences but it's unlikely that all of them are functional or necessary. It's reasonable to assume that only 30,000 - 50,000 are real origins and that means 0.3% of the genome is devoted to origins of replication.
- Regulatory sequences: The transcription of every gene is controlled by sequences that lie outside of the genes, usually at the 5′ end. The total amount of regulatory sequence is controversial but it seems reasonable to assume about 200 bp per gene for a total of five million bp or less than 0.2% of the genome (0.16%). The most extreme claim is about 2,400 bp per gene or 1.8% of the genome.
- Scaffold attachment regions (SARs): Human chromatin is organized into about 100,000 large loops. The base of each loop consists of particular proteins bound to specific sequences called anchor loop sequences. The nomenclature is confusing; the original term (SAR) isn't as popular today as it was 35 years ago but that doesn't change the fact that about 0.3% of the genome is required to organize chromatin.
- Transposons: Most of the transposon-related sequencs in our genome are just fragments of defective transposons but there are a few active ones. They account for only a tiny fraction of the genome.
- Viruses: Functional virus DNA sequences account for less than 0.1% of the genome.
If you add up all the functional DNA from this list, you get to somewhere between 2% and 3% of the genome.
Image credit: Wikipedia.