The big questions for many of us are how many different microRNAs are there in a typical cell and how many of them have a real biological function. These questions are, of course, part of the debate over junk DNA. Are there thousands and thousands of microRNA genes in a typical genome and does this mean that there's a lot less junk DNA than some of us claim?
The journal Cell Death and Differentiation has devoted a special issue to microRNAs [Special Issue on microRNAs – the smallest RNA regulators of gene expression]. There are four reviews on the subject but none of them address the big questions.
That didn't stop the journal from leading off with this introduction ...
It is now well recognised that the majority of non-protein-coding genomic DNA is not “junk” but specifies a range of regulatory RNA molecules which finely tune protein expression. This issue of CDD contains an editorial and 5 reviews on a particular class of these regulatory RNAs, the microRNAs (miRs) of around 22 nucleotides, and which exert their effects by binding to consensus sites in the 3'UTRs of mRNAs. The reviews cover the role of miRs from their early association with CLL to other forms of cancer, their importance in the development of the epidermis and their potential as disease biomarkers as secreted in exosomes.I'm not certain what the editors mean when they say that "it is now well recognised ..." I interpret this to mean that there are a large number of scientists who are completely uniformed about the structure of genomes and the debate over junk DNA. In other words, it is now well recognized that some scientists don't know what they are talking about.
I don't know any expert who would claim that 50% of large genomes consist of genes that specify regulatory RNAs involved in fine-tuning protein expression. Do you?
On a related issue, Wilczynska and Bushell begin their review with ...
Since their discovery 20 years ago, miRNAs have attracted much attention from all areas of biology. These short (~22 nt) non-coding RNA molecules are highly conserved in evolution and are present in nearly all eukaryotes.Sequence conservation is an important criterion in deciding whether something is functional. In order to use conservation as a measure of function you have to establish some standards that let you distinguish between sequences that are "conserved" by negative selection and those that have drifted apart by random genetic drift.
What do Wilczynska and Bushell mean when they say that microRNAs are "highly conserved"? The most highly conserved genes exhibit about 50% sequence identify between prokaryotes and eukaryotes. They are almost identical within mammals. Other highly conserved genes are about 80% identical within animals (e.g. between insects and mammals). As far as I know, the sequences of most putative microRNAs aren't even similar within mammals and certainly not between mammals and fish.
The phrase "highly conserved" has become meaningless. It's now a synonym for "conserved" because nobody ever wants to just say "conserved" and they certainly don't want to say "moderately conserved" or "weakly conserved" even if it's the truth.