More Recent Comments

Thursday, November 21, 2013

Oops! MOOCs Didn't Work Out So Good for Sebastian Thrun

From Tressie McMillan Cottom at tressiemc [The Audacity: Thrun Learns A Lesson and Students Pay].
Sebastian Thrun, founder of Udacity, one of the most high-profile private sector attempts to "disrupt" higher education discovered inequality this week. Thrun has spent the last three years dangling the shiny bauble of his elite academic pedigree and messianic vision of the future of higher education before investors and politicos. He promised nothing short of radically transforming higher education for the future by delivering taped classroom lessons of elite professors through massive open online courses. So what went wrong?

After low performance rates, low student satisfaction and faculty revolt, Thrun announced this week that he has given up on MOOCs as a vision for higher education disruption. The "godfather of free online education" says that the racially, economically diverse students at SJSU [San Jose State University], "were students from difficult neighborhoods, without good access to computers, and with all kinds of challenges in their lives…[for them] this medium is not a good fit." It seems disruption is hard when poor people insist on existing.
Thrun's goal was to market lectures by "elite" professors at places like Sanford1. His new company, Udacity, was going to make tons of money by selling lists of successful students to private companies who are looking for talent. Guess what? It turns out that there are lots of disadvantaged students in introductory courses at SJSU who don't learn from lectures given by elite Stanford professors. Who would have guessed?

In case you've forgotten the hype that Sebastian Thrun created when he formed Udacity, read: Sebastian Thrun Will Change Education. And watch the video.



1. My position on this is that the professors at Harvard and Stanford are not necessarily the best teachers. In my field of biochemistry, for example, we have direct evidence that professors at MIT do a horrible job of teaching biochemistry [Where Are the Best University Teachers?]. In my experience, the best biochemistry teachers are often located at small colleges where they pay attention to the latest pedagogical literature and actually read the textbooks they use in class.

Wednesday, November 20, 2013

Fred Sanger (1918-2013)

BBC News is reporting that Fred Sanger
has died [Frederick Sanger: Double Nobel Prize winner dies at 95]. Sanger is one of the few people to win two Nobel Prizes. His first was for sequencing insulin and his second was for developing a technique for sequencing DNA (Sanger sequencing).

Most people, even most scientists, have no idea how much he influenced molecular biology. Sanger worked at Cambridge (UK). When Francis Crick first arrived at Cambridge in 1947 he soon met a number of important scientists. Here's how Horace Freeland Judson describes Sanger in The Eight Day of Creation (pp. 88-89).
One of these in particular, the biochemist Frederick Sanger, came to have great intellectual importance in Crick's thinking and then to molecular biologists generally as the field developed. Sanger is temperamentally and in scientific style Crick's opposite. Where many scientists, Crick among them, flower at conferences and do a great deal of their science by talking, Singer is a quiet man—reticent, even shy, a man who worked with his hands, at the bench. He almost never talked to the press, never despite the editor's importuning wrote the big article for Scientific American. One might spot him bicycling to work on a spring morning, in a drab brown coat, in the rain. Once I stopped to talk with him in the corridor of the laboratory building, where he was waiting in the queue for his turn at the ultraviolet-light box, in order to illuminate the spots on a sheet of chromatography paper he was holding. Sanger is a Quaker by upbringing, and stayed at Cambridge through the second world war; holding only a junior fellowship in the biochemistry department, and even when the war dried up the usual sources of research funds, with family money he was able to keep going. In the course of nearly a decade, beginning in the mid-forties, Sanger settled upon the new techniques of chromatography to determine the amino-acid sequences of the two chains of the bovine insulin molecule. He proved that the sequences are unique and always the same, meaning that every molecule of insulin in every cow is exactly like every other. Yet the sequences show no general periodicities: they are not predictable from ordinary chemical rules.

Sanger published very rarely. His papers came to be red with heart in mouth by other scientists, for they are technically brilliant. Even as he worked, though, the news slowly spread and the implications sank in. For one thing, his department held a biochemistry tea club where perhaps once a month research that was relatively finished, though not yet submitted for publication, was presented. Brigitte Askonas, later an important figure in immunology in England, came to Sanger's lab as a doctoral student late in 1948, staying on into 1952. "Even then, Fred had only a minor fellowship—and some had wanted to kick him out," she told me once. "When one would ask him how his work was going, he would say very little. 'Oh, I've got another peptide.'" Then at a lab meeting he would bring a stack of cards showing overlapping short sequences, and slowly, diffidently, build up his latest segment of the molecule. "Crick always came to the tea club," Askonas said. "And he always asked awkward questions. Enfant terrible questions. And then he would explain, somewhat disingenuously, 'You see, I'm just learning.'" Sanger's general conclusion was forceful by 1949, when he went to the annual symposium on quantitative biology at Cold Spring Harbor (his only such visit). In a paper published on the first of June of that year—the earliest of his magisterial series of papers on insulin appearing every odd-numbered year until 1955—he was already able to say that "there appears to be no principle that defines the nature of the [amino-acid] residue" occupying any particular position in a protein. The conclusion was definitive by 1951. For this work and the methods of sequencing he invented to do it, Sanger was awarded the Nobel Prize in chemistry in 1958. (He later turned to the more difficult problem of sequencing nucleic acids, which earned him a share of another Nobel Prize, in 1980. Crick, from his first arrival in Cambridge, new of Sanger's work step by step, months and even years before new steps were published.


Tuesday, November 19, 2013

The Green Party (of Canada) vs Science

The Green Party of Canada is led by Elizabeth May who has a seat in parliament. The Green Party (of Canada) advocates many positions that are anti-science [Do Not Vote for the Anti-Science Green Party].

The National Post is a major Canadian newspaper that leans to the right so it has never been a friend on the Green Party. In spite of this bias, they got something right when they wrote, Elizabeth May’s Party of Science seems to support a lot of unscientific public policies.

The article was written by Tristin Hopper. Here's what he says in the opening paragraphs.
Two months ago in Halifax, Green Party leader Elizabeth May appeared at a Stand Up For Science rally; one of many demonstrations held across the country to protest, among other things, a Canada-wide “muzzling” of government scientists.

“You may not like the opinions you get from science, but you have to listen to science,” Ms. May told Halifax radio.

Only a week before, however, Ms. May had been at a town hall meeting in her Saanich, B.C. riding telling her constituents not to trust federal science — albeit from a different agency than the ones being defended on the streets of Halifax.

“Agriculture Canada is increasingly a corporate model for profits, for Monsanto and Cargill, and certainly not to help farmers and certainly not to ensure safe food for Canadians,” said Ms. May.
The point needs emphasis. There's really no serious scientific debate over the safety of GM food. It is safe to eat. That does not mean that every single scientific paper that has ever been published proves that GM food is safe. You can always find some paper somewhere that backs up your preferred view of a scientific issue. Most Sandwalk readers know that real science is determined by the consensus views of the experts in the field and not by the rogue scientists who disagree. If you've been reading my blog, you will also know that in any debate that involves science both sides have to appear to have science on their side because, if you don't have science on your side in the 21st century, you've lost the debate.

Here's how Michael Kruse puts it. (He is quoted in the National Post article.)
“I really think the Green Party is just doing the same things everybody else does, which is to make up an idea that matches with your ideology, and then go looking for evidence to support it,” said Michael Kruse, chair of Bad Science Watch, a non-profit devoted to rooting out false science in public policy.
Michael has it right. The Green Party is doing exactly what a long list of groups do when their favorite beliefs aren't supported by the scientific consensus. They cherry-pick. Then they make up conspiracy theories to explain why climatologists, evolutionary biologists, nutritional scientists etc. are misleading the general public about the real science in their field.
In a July essay, Aaron Larsen, a Canadian-born Harvard post-doctoral fellow publicly called out the Green Party—his preferred choice at the ballot box—for its platform declaring that genetically-engineered crops are a “potentially serious threat to human health and the health of natural ecosystems.”

“Just to be clear, there has never been a single reputable, peer-reviewed study that has found any link between the consumption of genetically modified foods and adverse health effects,” he wrote.
That's why the Green Party is anti-science. There are many other examples of Green Party policies that are anti-science. You should not vote for the Green Party if you value science. I hate to think what might happen to science if it ever became the governing party of Canada.


[Hat Tip: Canadain Atheist]

Monday, November 18, 2013

Another Example of IDiot Reasoning

My philosopher friend, Chris DiCarlo, and I are trying to teach our students how to think critically. We use the evolution/creation debate as an example of how to make valid arguments (and how not to make them). Two of the important points we emphasize are that you should try to avoid the strawman fallacy and you should try very hard not to misrepresent your opponent's point of view. (These are related.)

I tell my students that it's important to understand what your opponents are arguing—you must try and walk in their shoes, so to speak. This is crucial. You may decide that their arguments are completely wrong and ridiculous but you must make sure you interpret them correctly or you are guilty of several sins.

You might recall that I recently posted a comment about David Evans, Executive Director of the National Science Teachers Association (NSTA) [David Evans Says, "Teach What the Vast Majority of Scientists Affirm as Settled Science"]. I liked the idea that we should teach what the "vast majority of scientists affirm as settled science." When it comes to teaching, you have to make a decision about what is good science and what is bad science and it seems reasonable to NSTA (and to me) that the consensus among the experts is a good criterion to use. If you read the comments in that post you'll see that it's not always easy to decided what that consensus is, but that's not the main point.

Monday's Molecule #223

Last week's molecule was a Holliday junction, one of the key intermediates in recombination. It's named after Robin Holliday who has since retired from science to concentrate on being a sculptor. He has produced several "biological" sculptures including "DNA Structure" (top) and "Cross Over" (bottom). The winner is Caroline Josefsson from British Columbia. The undergraduate winner is Andrew Wallace but since he lives in Australia, I suspect he won't be coming to lunch [Monday's Molecule #222].

Today's molecule (below) is not one of my favorite molecules for many reasons. However, it's pretty important in some species. Name the molecule, being as specific as you can without resorting to IUPAC rules. I need the most common name as well as a more detailed name.

Email your answer to me at: Monday's Molecule #223. I'll hold off posting your answers for at least 24 hours. The first one with the correct answer wins. I will only post the names of people with mostly correct answers to avoid embarrassment. The winner will be treated to a free lunch.

There could be two winners. If the first correct answer isn't from an undergraduate student then I'll select a second winner from those undergraduates who post the correct answer. You will need to identify yourself as an undergraduate in order to win. (Put "undergraduate" at the bottom of your email message.)

Thursday, November 14, 2013

Toronto Mayor Rob Ford Likes Tim Hortons Coffee!

The mayor of Toronto is an alcoholic, a drug user (cocaine), and many other things that make him unsuitable to hold any political office. The city of Toronto is trying really hard to get him to resign or take a leave of absence but there's not much they can do if he refuses to act in an honorable and responsible manner.

It's really hard to find anything likeable about the man but I did notice that he likes Tim Hortons coffee. Look at what's in his hand as he walks down Danforth Street in drunken stupor! He can't be all bad, can he?



Wednesday, November 13, 2013

Baldness Is not a Disease. It Does not Need to Be "Cured"

A recent article in New Scientist made me annoyed. The title in the print edition is Cure for Baldness Finally Cuts It. It starts off with ...
We may be a hair's breadth away from a cure for baldness.
Baldness is not a disease so it doesn't need to be cured.1 Gray hair is also not a disease and neither are the wrinkles that appear on your face as you get older.

You may choose to disguise baldness with hair transplants or paint your white hairs to make it look like you don't have them. You can even inject botox to hide wrinkles. If you do this, the only disease you have is vanity. And stupidity, for letting the cosmetic industry trick you into feeling guilty about a perfectly natural phenomenon.

I'm never going to let my tax money pay for your vanity "cure." Don't even ask if it should be covered by our public health insurance.


1. Don't quibble. You know that what I'm talking about is the normal kind of baldness in men that develops as you get older.

Tuesday, November 12, 2013

David Evans Says, "Teach What the Vast Majority of Scientists Affirm as Settled Science"

The National Science Teachers Association (NSTA) is responsible for The Adaptation Assessment Probe that I criticized last week. It's a remarkably poor question on adaptation—expecially considering that it was designed by teachers.

David Evans1 is the Executive Director of NSTA and he has written about the recent attempts to insert creationism into textbooks in Texas [In Texas, Standing Up for Science]. He says one very good thing in these two paragraphs.
There are many ways that humans come to know, experience, understand and appreciate the world in which we live. Consider, for example, the different realms of religion, science and art. We can all appreciate the beauty of a sunset without understanding that its beauty comes from the energy of a thermonuclear reaction and the refraction of its light in the atmosphere. Likewise, understanding the scientific processes of the sunset does not prevent one from capturing its beauty on canvas or making a spiritual connection.

There are countless differing opinions about how best to educate our children, but presenting non-scientific or religious ideas in science class or in science textbooks is simply wrong and blurs the line about what is and what is not science. This will only confuse and mislead students and does nothing to improve the quality of science education and everything to weaken it. Decisions about what counts as science should not be a popularity contest. No matter how many people object, public schools must teach what the vast majority of scientists affirm as settled science.
I like the way he expresses the idea that we "must teach what the vast majority of scientists affirm as settled science." This avoids getting into definitions about what counts as science. It avoids the "methodological naturalism" trap. Well done!

The next paragraph isn't quite as good. It could have been a lot better. All he had to do was leave out the little phrase that I underline and enclose in brackets. It would not change the meaning but it would properly reflect "what the vast majority of scientists accept as settled science."
Texas students deserve the best science education possible, as do students everywhere. This means teaching them sound science, including evolution [by natural selection] as a major unifying concept in science. It is firmly established as one of the most important and robust principles in science, and is the best and most complete scientific explanation we have for how life on Earth has changed and continues to change. Furthermore, the very foundation of science is grounded in, and based upon, evidence. Classrooms will use the textbooks Texas adopts for years (the last science textbook adoption was a decade ago). Compromising the integrity of science for a whole generation of students to satisfy a few vocal ideologues is simply not acceptable.


1. From the website: "Evans holds a Ph.D. in oceanography from the University of Rhode Island and a bachelor’s degree in mathematics from the University of Pennsylvania. He studied for his teaching certification at Villanova University."

Monday, November 11, 2013

Monday's Molecule #222

Last week's molecule was D-serine. (Not L-serine.) The winner is undergraduate Zhimeng Yu [Monday's Molecule #221].

I was reminded of this week's molecule by a discussion we are having in an evolution forum and by a comment from a student who took a MOOC on genetics. Does it depict something that should be taught in every introductory genetics course? Is it something that should be discussed in an evolution course? You need to name the structure formed by the blue, gray, and black strands. It has a specific name.

Email your answer to me at: Monday's Molecule #222. I'll hold off posting your answers for at least 24 hours. The first one with the correct answer wins. I will only post the names of people with mostly correct answers to avoid embarrassment. The winner will be treated to a free lunch.

There could be two winners. If the first correct answer isn't from an undergraduate student then I'll select a second winner from those undergraduates who post the correct answer. You will need to identify yourself as an undergraduate in order to win. (Put "undergraduate" at the bottom of your email message.)

Mechanisms of Evolution – Philipp Dettmer (2013)

This is a video that's specifically designed to teach the mechanisms (plural) of evolution. It's produced by Philipp Dettmer who, as near as I can tell, is an expert on video presentations but not on evolution. A perfect example of style trumping substance.

How many errors can you spot?




They're Firing Cannons Across the Street!

Today is November 11th and the cannons started blasting at 11am in Queen's Park just across the street from the building where my office is located. It's a day when we should remember the horrors of war and the waste of lives, both civilian and military. It's a day when we should resolve never to let army generals run the world. It's a day to reflect on the many times that we failed to keep the peace and the terrible cost of those mistakes.

So how do we celebrate peace and remember the evils of armies, guns, and bombs? In Toronto we do it by a public display of soldiers dressed in their finest uniforms bedecked with medals. And the army brings its cannons. It's all very glorious.

I long for the day when we don't even have an army and all the cannons are rusting in some junk heap. That will be the day when we have truly learned about the evils of war and the purpose of November 11th.

I agree with PZ Myers when he asks Who deserves honor?


Sunday, November 10, 2013

I'm Related to a Philosopher! Edwin Proctor Robins (1872-1899)

I'm been filing and organizing my mother's genealogical data and I came across a list of people buried in various Prince Edward Island (Canada) cemeteries. One of the tombstones in the Lower Bedeque United Church Cemetery says, "In Memory Of / Edwin Proctor Robins, / Born At / Central Bedeque / July 2, 1872. / Died at / Cornell University, Ithaca, N. Y. / April 19 1899. / Mors Janua Vitae [Death is the gate of [everlasting] life]" [Edwin Proctor Robins].

This was intriguing. I know I am related to all the Robins (Robbins) descendents from Prince Edward Island but I'd never heard of Edwin Proctor Robins. His great-grandfather, Robert Robbins, is a United Empire Loyalist who came to PEI from New Jersey when the American Revolution ended. Edwin Proctor Robins and I are fourth cousins, three times removed. Why did he die at Cornell University?

I still don't know how he died and why he was so young (26 years old) but I did find a book he published on Some Problems of Lotze's Theory of Knowledge. I think the book was first published in 1900—a year after he died. Sounds like Edwin Proctor Robins might have been an epistemologist. Does anyone know anything about my relative or about Lotz's Theory of Knowledge?


Friday, November 08, 2013

Evolution: A Course for Educators: Week One

I'm taking a MOOC! It's called Evolution: A Course for Educators. The principle instructors are Joel Cracraft and David Randle of the American Museum of Natural History in New York (USA).
Welcome to Evolution: A Course for Educators! We’re excited to have almost 13,000 students enrolled in the course and look forward to spending the next four weeks together as we learn about the Tree of Life, natural selection, the history of life, and human evolution, as well as how to incorporate an exploration of these issues into your classrooms.
You can earn a "Verified Certificate" by paying $29.00.

Science Journal Blows It Again

This week's issue of Science contains three separate papers analyzing transcription factor binding sites and chromatin modification sites in the genomes of different individuals. If most of these sites are spurious sites that just happen to contain a consensus sequence, then you would expect a lot of variability since the sites are mostly in junk DNA where the sequences make no difference. That's what all three papers found but, of course, they interpret this to mean that the regulatory sites must be responsible for the variation between individuals.

The papers were summarized in the form of a "press release" called a "Perspective." The complete citation is ...
Furey, T.S. and Sethupathy, P. (2013) Genetics Driving Epigenetics. Science 342:705-706. [doi: 10.1126/science.1246755]
These authors are affiliated with several departments at the University of North Carolina in Chapel Hill but, most significantly, they are part of the Carolina Center for Genome Sciences. This strongly suggests that they know something about genomes.

Thursday, November 07, 2013