More Recent Comments

Thursday, April 30, 2009

NCSE v National Association of Biology Teachers

There's been a lot of discussion recently about the proper role of scientific organizations, such as the American Association for the Advancement of Science (AAAS), The Royal Society, and the National Academies of Science (NAS), in the conflict between science and religion. Many people, including me, think that these scientific organizations should remain neutral on the issue of possible conflict between sceince and religion.

The situation with respect to the National Center for Science Education (NCSE) is more complicated. I believe that NCSE should also avoid taking a stand in favor of some religions over others, and in favor of religious versus non-religious interpretations of the conflict.

It's worth reminding people of how this issue has played out in the past so I'm posting a brief summary of an incident that took place over ten years ago.

In 1995, the National Association of Biology Teachers issued the following statement.
The diversity of life on earth is the result of evolution: an unsupervised, impersonal, unpredictable and natural process of temporal descent with genetic modification that is affected by natural selection, chance, historical contingencies and changing environments.
A number of theologians and theistic evolutionists objected to the inclusion of "unsupervised," "impersonal," and "unpreditable" since this clearly conflicted with their religious beliefs.

In 1997, NABT reviewed their statement in light of these complaints and rejected them, voting to keep the original statement. At that point, Eugenie Scott, the Executive Director of NCSE stepped in and persuaded the teachers to drop "unsupervised" and "impersonal" from the statement.

Why did NCSE support the theologians and theistic evolutionists against the biology teachers? It's because Genie draws a line between materialistic naturalism and philosophical naturalism and she thinks the biology teachers stepped over that line (see National Association of Biology Teachers incident for a description of the event). She believes that science cannot know whether evolution is unsupervised and/or impersonal.

I suppose she would have been comfortable with the following statement ....
The diversity of life on earth is the result of evolution: a natural process of temporal descent with genetic modification that is affected by natural selection, chance, historical contingencies and changing environments. Science is unable to tell whether evolution was unsupervised and impersonal or whether it was supervised by a personal god.
That's what she and her allies really want the teachers to say even though they don't insist upon it.

I disagree. I think that scientific evidence points overwhelmingly to a life that was not designed for a purpose. I think there's no evidence whatsoever to suggest that evolution was guided and I don't think we should censor ourselves from saying this.

I think Genie and NCSE are making too big of a distinction between methodological naturalism and philosophical naturalism. Saying that there is no evidence of purpose and direction is a perfectly good methodological statement and the conclusion that, therefore, evolution is unsupervised and unguided is rational based on what we know about science.

It was wrong of NCSE to pressure the biology teachers to change their statment.


Wednesday, April 29, 2009

Some scientists are astrologers, therefore science and astrology are compatible

 
Most people would laugh at you if you were to say that, "Some scientists are astrologers, therefore science and astrology are compatible." There's a serious logical flaw in that statement. It probably has a name but I can't think of it right now.

Chris Mooney sides with the accommodationists in the fight over how scientific organizations should behave Atheists for Common Cause With the Religious On Evolution. That's fine, he's entitled to his opinion.

What he's not entitled to is blatantly illogical arguments like the following.
First, I don’t see anything particularly “philosophical” about the accommodationist stance. Rather, holding that there is no necessary conflict between faith and science is an empirical matter: There are a vast number of different religions traditions in the world, and a still more vast number of ways in which different people profess and live out their faiths. In some of these traditions, and for some of these people, there is stark conflict with science; in other traditions, and for other people, there isn’t. That’s just a fact, and one that can be demonstrated simply by identifying any number of scientists who are religious, any number of religious leaders and denominations which embrace evolution, and so on.
There are religious people who are scientists. That's a fact, but it doesn't necessarily mean what Chris Mooney thinks it means.

It means the same thing as saying that some Intelligent Design Creationists are scientists. That's also a fact.

Please, let's stop using illogical arguments in this discussion. We can all agree that there are Theistic Evolutionist scientists, Young Earth Creationist scientists, Intelligent Design Creationist scientists, and scientists who believe in astrology and homeopathy. There are even scientists, as Chris knows, who deny global warming.

You can't draw any conclusion from those facts about whether science is compatible with all those beliefs.


[Image Credit: Astrology]

Head Growth and Tail Growth

There are many examples of polymerization reactions in biochemistry: DNA/RNA synthesis, protein synthesis, carbohydrate synthesis and fatty acid synthesis. In some cases the polymer consists of a string of identical monomers (e.g. some carbohydrates, fatty acids) while in other cases the polymer can be a mixture of several different kinds of monomers (e.g. nucleic acids, proteins).

There are two basic strategies of polymerization: head growth and tail growth. The basic concept is often presented in the textbooks when DNA synthesis or protein synthesis is described.

I posed a simple question yesterday and got some comments on the blog and in my email [Are You as Smart as a Second Year University Student? Q6]. Some people didn't have a clue what the question was about and some people declared that the question was silly. One commenter said, "Sounds like a stupid question that has something to do with memorizing someone's silliness and nothing to do with understanding biochemistry."

Let's see if you agree that this is a silly question that has nothing to do with understanding biochemistry.

In head growth the head of the growing polymer is "activated"—it carries the energy for the addition of the next monomer. This "activation" energy is depicted below as a red bond. Each of the incoming monomers is also "activated" but the energy of the activated bond will be used for the next addition once the monomer is added to the growing polymer.

The classic example of head growth is protein synthesis. Fatty acids are also made in this way.

In tail growth the head of the growing polymer is not activated. The energy for the addition of each monomer is supplied by the incoming activated monomer.

The best examples of tail growth strategy are nucleic acid synthesis, where the activated monomers are nucleoside triphosphates, and synthesis of storage polysaccharides, where the activated monomer is UDP-glucose.

Why is it important to understand the difference between head growth and tail growth? Because one type is unidirectional whereas the other type is compatible with both lengthening and shortening of the polymer.

Let's look at the process of error correction as seen in the proofreading reaction of DNA biosynthesis. Imagine that the replication complex makes a mistake and adds the wrong nucleotide to the growing DNA molecule. The incorrect nucleotide is subsequently removed by the proofreading activity of DNA polymerase. Since DNA synthesis is a tail growth mechanism, the removal of the most recently added monomer doesn't change the chemical reactivity of the growing end of the chain so the reaction can now continue in the direction of lengthening as shown by the green check mark in the figure.

If DNA synthesis utilized a head growth mechanism, then proofreading would not have evolved since removal of the last monomer also removes the activated head of the growing chain.1 That's why there's no proofreading in protein synthesis.

The synthesis of storage carbohydrates such as starch and glycogen doesn't involve proofreading but there's still a very good reason why the mechanism is tail growth. Recall that starch and glycogen are polymers of glucose and their role is to store glucose as a potential carbon source in time of need. When the need arises, the ends of the polysaccharide chains are nibbled back releasing glucose molecules (as glucose-6-phosphate). These molecules enter the glycolysis pathway.

The degradation reaction terminates when the immediate need for glucose has been met. Later on, in time of plenty, the starch and glycogen chains can be re-extended by adding more glucose residues. The reason why this is possible is because starch and glycogen synthesis is an example of tail growth just like nucleic acid synthesis. If nibbling the ends of the polysaccaride chains removed the activated head, as it would in the case of head growth, then the synthesis reaction could not occur. Thus, the fundamental reason why tail growth evolved in both nucleic acid synthesis and glycogen synthesis is the same.


One of the other reasons for discussing this concept in introductory biochemistry classes is that it gets students thinking about the big picture. Rather than focusing on the details of any one type of polymerization reaction they are encouraged to think about general strategies and they are stimulated to compare and contrast different types of reactions. Unfortunately this approach is rapidly disappearing from introductory biochemistry courses because they are often taught in sections where the lecturer in each section is a specialist in information flow, carbohydrate metabolism, or protein structure. These lecturers often don't know enough about the other subjects to make the relevant comparisons.

That wouldn't matter a great deal as long as the introductory biochemistry textbooks did the job for them. There are two reasons why that doesn't seem to work. First, many team-taught courses don't use a textbook because the individual experts in each section think they know everything they need to know and the students can just rely on the lecture notes.

Second, the comparative biochemistry concepts and principles are disappearing from the textbooks. This is partly because of the way courses are taught and the way students are examined—once the exam on carbohydrate metabolism is over, students don't have to remember anything about carbohydrates while preparing for the next test on lipids and membranes. It's also partly because some biochemistry courses don't cover all aspects of biochemistry in a single course. Many introductory biochemistry courses, for example, separate information flow (DNA replication, transcription, translation) from the rest of biochemistry.

Because of the negative feedback from the customers (Professors) my textbook does not mention head growth and tail growth. The concept is also missing in all of the other introductory biochemistry textbooks.

I'm putting it back in the next edition of my book even if it means losing some adoptions.


1. Admittedly, one could imagine evolving ways around this limitation; by re-activating the end in a separate reaction, for example.

Tuesday, April 28, 2009

Are You as Smart as a Second Year University Student? Q6

 
Are You as Smart as a Second Year University Student?

Question 1
Question 2
Question 3
Question 4
Question 5
Today was the final exam in my introductory biochemistry course. It was kinda sad because it's the last year I'll be teaching this course.

Here's a variation on one of the questions. How many of you know the answer?
There are two basic strategies in polymerization reactions: head growth and tail growth. For each of the following polymerization reactions identify whether it is an example of head growth or tail growth.

a) DNA synthesis
b) starch synthesis
c) fatty acid synthesis
d) protein synthesis

Bonus points for Sandwalk readers if you can explain why it's important for some polymerization reactions to use a tail growth strategy.


Monday's Molecule #119: Winners

 
The molecule is arsphenamine or Salvarsan—also known as compound 606 or "magic bullet." It is the first synthetic drug developed specifically to treat syphilis. It was discovered in Paul Ehrlich's lab in 1909. Ehrlich had already receive the Nobel Prize for his pioneering work on antibodies.

The discovery of arsphenamine was the subject of a 1940 movie called Dr. Ehrlich's Magic Bullet starring Edward G. Robinson as Dr. Ehrlich.

This week's winner is Laura Gerth of the University of Notre Dame. She identified the molecule, the Nobel Laureate, and even got the correct name of the movie! Laura has already agreed to donate her free lunch to a starving undergraduate.

The undergraduate winner is Stefan Tarnawsky of the University of Toronto. He took time off yesterday when he should have been studying for this morning's final exam in Biochemistry! I hope he didn't regret it.




This is a very famous molecule. There was even a Hollywood movie about it! Can you name it?

There is one Nobel Laureate who is most closely identified with this particular molecule, although it had nothing to do with the awarding of the Nobel Prize. You have to identify the Nobel Laureate and what the prize was really for.

The first person to identify the molecule and the Nobel Laureate wins a free lunch at the Faculty Club. Previous winners are ineligible for one month from the time they first won the prize.

There are six ineligible candidates for this week's reward: Peter Horwich from Dalhousie University, Devin Trudeau from the University of Toronto, Shumona De of Dalhousie University, Maria Altshuler of the University of Toronto, Mike Fraser of Toronto, and Alex Ling of the University of Toronto.

The Canadians continue their total dominance of the rest of the world. That's as it should be.

I still have one extra free lunch donated by a previous winner to a deserving undergraduate so I'm going to continue to award an additional free lunch to the first undergraduate student who can accept it. Please indicate in your email message whether you are an undergraduate and whether you can make it for lunch.

THEME:

Nobel Laureates
Send your guess to Sandwalk (sandwalk (at) bioinfo.med.utoronto.ca) and I'll pick the first email message that correctly identifies the molecule and names the Nobel Laureate(s). Note that I'm not going to repeat Nobel Prizes so you might want to check the list of previous Sandwalk postings by clicking on the link in the theme box.

Correct responses will be posted tomorrow.

Comments will be blocked for 24 hours. Comments are now open.






Monday, April 27, 2009

Monday's Molecule #119

 
This is a very famous molecule. There was even a Hollywood movie about it! Can you name it?

There is one Nobel Laureate who is most closely identified with this particular molecule, although it had nothing to do with the awarding of the Nobel Prize. You have to identify the Nobel Laureate and what the prize was really for.

The first person to identify the molecule and the Nobel Laureate wins a free lunch at the Faculty Club. Previous winners are ineligible for one month from the time they first won the prize.

There are six ineligible candidates for this week's reward: Peter Horwich from Dalhousie University, Devin Trudeau from the University of Toronto, Shumona De of Dalhousie University, Maria Altshuler of the University of Toronto, Mike Fraser of Toronto, and Alex Ling of the University of Toronto.

The Canadians continue their total dominance of the rest of the world. That's as it should be.

I still have one extra free lunch donated by a previous winner to a deserving undergraduate so I'm going to continue to award an additional free lunch to the first undergraduate student who can accept it. Please indicate in your email message whether you are an undergraduate and whether you can make it for lunch.

THEME:

Nobel Laureates
Send your guess to Sandwalk (sandwalk (at) bioinfo.med.utoronto.ca) and I'll pick the first email message that correctly identifies the molecule and names the Nobel Laureate(s). Note that I'm not going to repeat Nobel Prizes so you might want to check the list of previous Sandwalk postings by clicking on the link in the theme box.

Correct responses will be posted tomorrow.

Comments will be blocked for 24 hours.


Sunday, April 26, 2009

Brandon Thinks I'm Illogical

 
Brandon writes on Siris: Moran and the 'Courtier's Reply'.
Larry Moran suffers what looks like a complete lapse of critical thought in a recent post on the so-called 'Courtier's Reply'. As he puts it:
Atheists and theists often discuss the existence of God. Unfortunately, these discussions often degenerate into classic Christian apologetics where the main goal of the theist is to rationalize why his or her god doesn't conflict with rationality.

Before long they are rambling on about how to resolve the problem of evil or why god doesn't reveal herself. These problems only exist once you've accepted the premise that there is a god/spirit. This sort of apologetics has nothing to do with the fundamental question of whether god exists in the first place.
Now, Moran is usually pretty reasonable; but this argument is so thoroughly absurd and irrational that he should be ashamed to have put it forward. Let's abstract from the situation a bit to show why. Take a position, A, and a contrary position, B. Now suppose that A gives an objection to B. To this objection, B responds with an argument, whether good or bad, that the objection fails. To which A replies, "This sort of apologetics has nothing to do with the fundamental question of whether B is true in the first place." But this is demonstrably false, of course; B's argument was dealing with an objection put forward by A. What A is trying to do is irrational: he's trying to rig the argument so that his objections are never answered, independently of whether they can be, by dismissing any answer that might be made to them as 'apologetics that have nothing to do' with the original question.

So it is here. The reason theists talk about the problem of evil or the problem of hiddenness is that atheists typically raise these as objections to theism.
I don't talk about the "problem of evil" when I'm discussing the possible existence of supernatural beings and neither do many other atheists.

The point of the Coutrier's Reply is that theists bring up these "problems" when they should be discussing whether gods exist.

The Courtier's Reply does not apply when atheists engage in discussions about the problem of evil or any other problem that theists have when they're trying to reconcile superstition and rationality. It only applies when theists try moving the goalposts—which they do all the time.
It's unfortunate, too, because it makes Moran seem more unreasonable than he probably is. He ends by saying that he would be happy to discuss evidence for theism. This would sound somewhat more sincere if he hadn't just finished giving an argument for why he doesn't have to listen to any responses to any objections he might raise against this purported evidence.
I said I'd be happy to discuss any evidence for the existence of a spiritual world and I stand by that statement.

Brandon, if you or anyone else wants to debate the existence of the supernatural then, by all means, give it your best shot. Give me the evidence for the existence of god(s) and I promise to listen. Maybe I misunderstood your "evidence." Are you saying that the presence of evil in the world is evidence that god(s) exist?


Foot Soldiers and Generals

 
Richard Hoppe published the usual accommodationist drivel on The Panda's Thumb: Generals who don’t know the nature of war. Here's an excerpt ...
I’m one of the foot soldiers in this battle, a sergeant operating in a conservative rural county far from the ethereal heights of the University of Chicago. I’ve been at it (off and on, mostly on for the last 6 years) for more than 20 years. I published my first article on the political nature of the evolution/religion conflict in 1987. I am engaged at the local and state levels, the former on a weekly basis (search this blog on “Freshwater” for local stuff and see here for just one example of State BOE stuff). My political experience goes back to 1968, when I was a big city Democratic party ward officer. I have a hell of a lot better view of what’s pragmatically necessary and what is effective at the level of the local school board and the local church than Coyne can even imagine. Coyne (and Myers and Moran and Dawkins) are not engaged at that level on anything approaching a regular basis. They lead their congregations from high pulpits. They sit above the choir preaching a message that is disconnected from – indeed, sometimes antithetical to – the reality on the ground. They’re the generals who argued against air power, courtmartialed Billy Mitchell, and then watched ships sink at Pearl Harbor. Coyne wants to argue philosophy in a political war. That’s not a tactic, it’s a politically lethal red herring.
I'm not going to lower myself to defending my activities over the past forty years but I would like to say one thing—I'm very disappointed that Richard hasn't made any contribution at all to the fight in my home country, Canada. (That makes the same amount of sense as what he said about me.)

Oh, and one more thing, I wasn't alive in 1941 but many of my Canadian relatives and high school friends of my parents—who admittedly weren't generals—had already been fighting World War II for two years before Pearl Harbor.1 Some of them were involved in a little airplane dustup called The Battle of Britain. Some of them died.

How dare Richard compare me to the American Generals and politicians who sat on their asses while Hitler overran most of Europe and brought Great Britain to its knees.

PZ Myers was as outraged as I am by Richard's childish outburst. Read PZ's reply on Pharyngula: Foot soldiers who lack vision.

What he said.


1. I had no idea who Billy Mitchell was until my friend Google helped out.

Should Scientific Organizations Advocate Accommodationism?

 
John Wilkins has started an interesting debate on the topic of Science and religion for individuals and organisations. He starts with a couple of multiple choice questions.

Get on over to Evolving Thoughts and share your evolving thoughts on the subject. Meanwhile you can answer my own multiple choice question in the sidebar.
What should scientific organizations like AAAS and NAS say about religion?
a) that religion and science are compatible
b) that religion and science are incompatbile
c) nothing


Saturday, April 25, 2009

Science in the Media:Put Up or Shut Up

 
Kathy Sykes is a professor of sciences and society at the University of Bristol (UK). She writes about science journalism in the latest issue of New Scientist [Science in the media: Put up or shut up].

Sykes doesn't like the fact that scientists are criticizing popular science journalism. Ryan Gregory has already posted an article about this and I urge you to go to Genomicron and leave a comment on his posting: Scientists about media: put up or shut up?.

I just want to make one point. Sykes writes ...
Similarly, New Scientist recently took flak over its cover that proclaimed "Darwin was wrong". The article inside described discoveries that are leading to modifications to the theory of evolution. A cheap trick to sell magazines while giving fodder to the enemies of evolution? Sales certainly went up that week, but if more people than usual bought the magazine and read the article, more people will have found that scientists agree that Darwin was fundamentally right.
The three most important criteria for good science journalism are: accuracy, accuracy, and accuracy. Everything else is secondary.

My objection to that article in New Scientist was that it had nothing to do with Darwin. It's not a question of whether Charles Darwin was right or wrong about horizontal gene transfer and the early evolution of prokaryotes. He had absolutely nothing to say about the matter. Dragging Darwin's name into modern molecular evolution was a cheap ploy to boost sales. People reading the article would have still got the wrong impression about Darwin's contributions, even if they had ignored the cover.

The article was scientifically inaccurate because it misrepresented the state of science in 2009 [Explaining the New Scientist Cover].


Does Intelligent Design Creationism Make Scientific Predictions?

 
It is often claimed that Intelligent Design Creationism doesn't make predictions. This is not true. IDC predicted that irreducibly complex systems could not evolve. That was a firm prediction by Michael Behe.

The prediction has been shown to be wrong. There are many natural evolutionary pathways known to give rise to irreducibly complex systems. The citric acid cycle is a clear example and so is the bacterial flagellum.

Here's another prediction, according to Barry Arrington on Uncommon Descent [FAQ4 is Open for Comment].
ID does not make scientifically fruitful predictions.

This claim is simply false. To cite just one example, the non-functionality of “junk DNA” was predicted by Susumu Ohno (1972), Richard Dawkins (1976), Crick and Orgel (1980), Pagel and Johnstone (1992), and Ken Miller (1994), based on evolutionary presuppositions. In contrast, on teleological grounds, Michael Denton (1986, 1998), Michael Behe (1996), John West (1998), William Dembski (1998), Richard Hirsch (2000), and Jonathan Wells (2004) predicted that “junk DNA” would be found to be functional.

The Intelligent Design predictions are being confirmed and the Darwinist predictions are being falsified. For instance, ENCODE’s June 2007 results show substantial functionality across the genome in such “junk DNA” regions, including pseudogenes.

Thus, it is a matter of simple fact that scientists working in the ID paradigm carry out and publish research, and they have made significant and successful ID-based predictions.
This one is more contentious. There are many scientists who think that much of what we currently call "junk DNA" actually has a function. Even though they might be atheists, their prediction is the same as the creationists.

I'm convinced that most of our genome is truly junk. I predict that the creationist prediction will turn out to be wrong. I wonder if it means that intelligent design creationism will be falsified?


Not Me

 
Andy Thomson is a psychiatrist. He gave a talk at the Atheist Convention 2009 in Atlanta, Georgia (USA). PZ Myers thinks that Thomson's explanation of religious belief is just what he (PZ) believes.

Not me. The talk is far too adaptationist for my liking. The entire lecture is based on evolution by natural selection—the Darwinian explanation.
[Darwin's] idea gives us the only workable explanation we have for the design and architecture of the human mind.
No it isn't the only workable explanation. I believe that our present mind is also due, in part, to accidents of evolution some of which might have nothing to do with design. Some of them might even be maladaptations. The architecture of our brain is a product of evolution but not all of that evolution is adaptation by natural selection.

We have got to stop trying to explain everything as an adaptation or the consequences of an adaptation. Many, but not all, people are prone to superstitious beliefs. Much of that is due to culture and it can be changed. Our brains are not perfect. They can be tricked into believing all sorts of silly things and believing in God is just one of them. It does not deserve a special evolutionary explanation.

At some point in the near future, religion will be only a minor problem in most Western industrialized nations. Will we have psychiatrists giving lectures about how are brains are adapted to be atheists?

Of course not, just as today we don't have psychiatrists and psychologists giving lectures about how the human brain is adapted to prefer slavery or the inferiority of women. Perhaps they would have if they had lived 1000 years ago.



Watch the video starting at 27 minutes. You'll see Thomson praising research that locates thoughts like "God's Love" and "God's Anger" to specific parts of the brain. These are the same parts of the brain used in other thoughts. Presumably, they are the same parts of the brain used when thinking about being abducted by UFO's or believing in Santa Claus. That's not a big deal, is it?

So when Thomson says, that this data, "Supports theories that ground religious belief in evolved adaptive mechanisms," he could just as easily have said the same thing about UFO abductions ("The evidence support theories that ground belief in UFO abductions in evolved adaptive mechanisms.")

What is the alternative? Did anyone think that these thoughts would map to a special part of the brain that was used exclusively for thinking about God's Love?


Evolution of the Long Distance Runner

 
Today's Toronto Star has a feature article on marathon running [Any schmo can run a marathon]. The subtitle is more informative "Humans, scientists say, are built for speed – or, at least, endurance. It's all in our shortish toes and big behind."

As one of those schmos who can't run a marathon,1 I'm always intrigued by claims that all the rest of you have evolved over millions of years to become the perfect marathon runners. The article, by staff reporter Cathel Kelley, focuses on the claims of Daniel Lieberman, an anthropologist at Harvard University. He is one of many scientist who claim that humans are vastly superior at long distance running compared to other mammals, and even compared to our ancestors. They claim there's been selection for the ability to run long distances. Is this a reasonable explanation?

Lieberman's latest paper shows that individuals with short toes are possibly better runners than those with longer toes (Rolian et al. 2009). Since humans tend to have shorter toes than non-bipedal primates, this suggests a possible evolutionary adaptation to running.

An earlier paper promoted the idea that our gluteus maximus (GM) muscle is also an adaptation for long distance running (Lieberman et al. 2006). The closing paragraph of that second paper supports an adaptive explanation but it expresses the appropriate caveats.

Future experimental and paleontological research is necessary to clarify the functional and evolutionary history of the human GM. Based on the above results, we offer several alternative scenarios that merit further study. As noted above, one possibility is that australopithecines had an intermediate configuration of the GM (Berge, 1994Go; Berge and Daynes, 2001Go), retaining some kind of caudal portion but with a less expanded cranial portion than is evident in Homo. If so, then the caudal portion would likely have been an effective extensor of the femur during climbing and perhaps walking, and the cranial portion would have helped to stabilize the sacrum, but probably would not have been a strong trunk stabilizer. An implication of this scenario is that the expansion of the cranial portion of the GM is a derived trait of Homo that would have been selected for control of trunk flexion during endurance running (Bramble and Lieberman, 2004Go) and/or foraging (Marzke et al., 1988Go). An alternative possibility, however, is that the configuration of the GM in Australopithecus was much like that of Homo in terms of the loss of the GMIF. Either the australopithecine GM as a whole was relatively smaller, as many researchers suggest, or possibly as large as in humans (Haeusler, 2002Go). As shown above, the GM in either case is unlikely to have played much of a role in level terrain walking, and is unlikely to have been selected for running given that the genus lacks many other features associated with running capabilities (Bramble and Lieberman, 2004Go). According to this scenario, the derived anatomy of the GM in Australopithecus was probably a reconfiguration of the gluteal musculature for climbing, or a novel adaptation for foraging tasks such as digging that involve flexion of the trunk (Marzke et al., 1988Go). We cannot discount the hypothesis that expansion of the GM might have been useful for walking on uneven terrain. However, it is clear that expansion of the GM in Homo would have benefited any activity that requires trunk stabilization, especially running. Regardless of which scenario is correct, the expansion of cranial portion of the GM is a uniquely hominid characteristic, perhaps distinctive to the genus Homo, which played a vital role in the evolution of human running capabilities.
The newspaper description of the endurance running hypothesis (ERH) is a little more descriptive.
Humans' ability to run is unique among primates.

Why running? Because that's how we killed our food.

Experts call it persistence hunting. The Homo genus did not develop the most basic projectile – the spear – until 200,000-300,000 years ago. That left our ancestors equipped with little more than sharpened sticks for nearly two million years of carnivorous prehistory.

"Even middle-aged college professors can run at a speed that's above the trot-gallop transition of most animals," Lieberman says.

"Why is that important? Quadrupeds cannot pant and gallop at the same time. Their guts are too busy sloshing around like a piston. So, every 10 or 15 minutes, they overheat."

When they overheat, animals must stop to cool. But their bipedal pursuers keep on coming. After several stops and starts, the prey succumbs to heat exhaustion or its heart gives out.

This explains why they don't run the Iditarod in August.

Lieberman contends that this is the only explanation of how humans were capable of killing large game before developing projectile weapons.

"I defy most people to go out and kill a wildebeest with a wooden stick," he says.
Here's how I understand this story.

About one million years ago the entire human population was engaged in hunter-gatherer activities on the African savanna. Most of the small groups obtained a significant amount of their food by hunting large animals. The males would run after these large animals with no weapons. The animals would run away but the humans kept chasing them until the animals couldn't run any more and they dropped dead. (Presumably the wildebeests never caught on to the fact that they could just turn around and gore the pesky humans. Or maybe they couldn't because the humans could outrun them? Here's what happens when marathon-adapted humans try running with bulls.)

There was considerable variation within the human population. Some men had short toes and some men had long toes. Some men had well-developed gluteus maximus muscles and some men didn't. Presumably, the men with genetic traits that enabled them to run faster or farther than the other men got more food than their friends. Their friends either died of starvation or else they had so little meat they couldn't get a mate and reproduce.

Over time there was selection for men who could run farther and faster and humans became adapted to long-distance running. (Presumably the women were good at it as well because they inherited their genes from their fathers.)

When humans began to inhabit other locations that didn't require running, the adaptations remained because by that time all the low fitness variations had been eliminated from the population. That's why there was no loss of this ability when humans began to settle in northern forests and caves, and began to farm and create cities. We all remain well-adapted to long distance running so that, with only a little training, we could all chase down a wildebeest on the African savanna.

I assume the wildebeests just didn't evolve as quickly or they would have adapted as well.

The bison on the North American plains probably could run faster than the natives because, to the best of my knowledge, the North American natives didn't run after buffalo in order to make them die of heat exhaustion. They used sneaky tricks like forcing them to charge over cliffs. They also sneakily used bows and arrows. The natives only started chasing buffalo when horses became available, which is very strange since humans are better at long-distance running than horses—or so the story goes.

One of the problems with evolutionary psychology is that the psychologists claim to know exactly what human societies were like one million years ago. That's one of the problems with the endurance running hypothesis as well. It is based on the assumption that we know how primitive societies obtained food (by running after large animals on the savanna). In fact, we don't know if this is true and we don't even know what percentage of the species might have adopted this lifestyle.


1. Because my toes are too long.

[Image Credit (upper): Constantina Dita-Tomescu]

Lieberman, D.E., Raichlen, D.A., Pontzer, H., Bramble, D.M., and Cutright-Smith, E. (2006) The human gluteus maximus and its role in running. Journal of Experimental Biology 209:2143-2155. [DOI: 10.1242/jeb.02255]

Rolian, C., Lieberman, D.E., Hamil, J., Scott, J.W., and Werbel, W. (2009) Walking, running and the evolution of short toes in humans. Journal of Experimental Biology 212:713-72. [DOI: 10.1242/jeb.019885]

A Horse of a Different Color

 
John Hawks continues to post interesting articles on his blog and he continues his policy of not allowing comments. I want to ask a question about his latest posting [A horse of a different color] so I'm asking it here.

John is referring to a short paper on the evolution of coat colors in horses. Apparently, the analysis of DNA from ancient fossil horses reveals that most of them were bay in color. The chestnut coat color wasn't detected until about nine thousand years ago.

The authors of the paper claim there is no evidence for selection of coat color in horses prompting the following comment by John Hawks.
The pigment-altering mutations at these genes do not all show statistical signs of selection in contemporary samples of horses. But they aren't there in the ancient horses. That's the best evidence of selection you could possibly have. Message: tests of selection on contemporary samples are weak, particularly for loci with rare alleles or more than two alleles.
John, if I understand you correctly, you're saying that as long as an allele wasn't detectable in ancient populations but is detectable today then random genetic drift is ruled out.

That doesn't make sense to me. Perhaps you could explain? There must be more to your statement than that.


Friday, April 24, 2009

On the Existence of God and the Courtier's Reply

Atheists and theists often discuss the existence of God. Unfortunately, these discussions often degenerate into classic Christian apologetics where the main goal of the theist is to rationalize why his or her god doesn't conflict with rationality.

Before long they are rambling on about how to resolve the problem of evil or why god doesn't reveal herself. These problems only exist once you've accepted the premise that there is a god/spirit. This sort of apologetics has nothing to do with the fundamental question of whether god exists in the first place.

PZ Myers invented the parable of The Courtier's Reply to describe this situation.1 Rather than address the burning question—is the Emperor wearing any clothes?—the believers will complain that you don't understand the latest fashion.

They say you can't have a serious discussion about the existence of god because you aren't versed in the sophisticated arguments of Christian apologetics. In other words, you have to be intimately familiar with all the ways of rationalizing superstitious belief in god before challenging the very existence of god.2

It's amazing how few theists get the point. The latest person to demonstrate a fundamental misunderstanding of simple logic is Joe Hinman at Atheistwatch. Hinman has a Master's degree in Theology and he is currently studying for a Ph.D. in the history if ideas. He exposes himself by complaining about Anti-Intellectual Tendencies in Atheism.
So What this courtier's reply is saying is that if the skeptic says stupid things about theology and demonstrates that he knows nothing about it and the theist says "O your criticism is invalid because you don't understand what you are criticizing" then all the atheist has to do is say "that's the courtiers reply" and the theist is supposed to go "O my God, I've violated a law of logic!" and give up and stop believing in God. But in realty it's into a log of logic, I never heard it in a logic class.It's not in a logic text book, and the meaning of it is silly. I'ts just saying 'You can't point out my ignorance of theology because I will not allow theology to have any kind of validity or importance and religious people may not not any sort of human dignity." That's all it's saying. It's nothing more than anti-intellectual stupidity.

...

This anti-intellectual tendency is not confined to this one tactic. The new tactick, which I have noticed for a few years now, is to deny any sort of discipline of scholarship that has developed within the theological community. So any self defense that a believer could make is automatically suspect and wrong merely becasue it is theological. But then one wonders how the skeptics knowledge that theology is all bull shit could ever have developed in the first place? When we consider the history of Biblical scholarship it becomes clear that the atheists are merely arguing in a circle.

The history of scholarship shows us that it was not invented in answer to pressing atheist attacks on the bible.
Bingo! Christian apologetics was developed by people who believe in god. They needed to explain why their beliefs seem inconsistent with the real world. Many of these rationalizations are extremely "sophisticated" as you might expect since the problem is difficult.

I don't give a damn about those rationalizations no matter how many books have been written. Atheists don't have a problem with evil or sin or life after death or the resurrection. It's only theists who have a problem.

If Joe Hinman wants to explain why he is a theist then I'd be happy to discuss that topic. What's his best evidence for the existence of a spiritual world?


1. Also see The Emperor's New Clothes and the Courtier's Reply.

2. It's like saying that you have to learn how to cast a horoscope before you can question astrology.