Find out in today's Toronto Star [Darwin still spurs tributes, debates].

[Photo Credit: Pinus taeda, loblolly pine]
Morse, A.M., Peterson, D.G., Islam-Faridi ,M.N., Smith, K.E., Magbanua, Z., et al. (2009) Evolution of Genome Size and Complexity in Pinus. PLoS ONE 4(2): e4332. [doi:10.1371/journal.pone.0004332]
Calgary Catholic Bishop Fred Henry said the ideal date to launch such a campaign would be April Fool's Day."Aggressive, inward-looking, self-indulgent and narcissistic," now that's offensive. Is this what Bishop Henry means by "deep respect for all the individual players"?
"I don't know what the norms Calgary Transit uses to accept advertising, but if the benchmark is that it should be non-offensive, I'm offended," said Henry.
"This is insulting to us. The interfaith dialogue that goes on in this city is characterized by deep respect for all the individual players."
Henry characterized the ad's message as aggressive, inward-looking, self-indulgent and narcissistic.
[Hat Tip: Jeffrey Shallit at Recursivity.]
1. I've been there!.
I am well aware that this doctrine of natural selection, exemplified in the above imaginary instances, is open to the same objections which were at first urged against Sir Charles Lyell's noble views on 'the modern changes of the earth, as illustrative of geology;' but we now very seldom hear the action, for instance, of the coast-waves, called a trifling and insignificant cause, when applied to the excavation of gigantic valleys or to the formation of the longest lines of inland cliffs. Natural selection can act only by the preservation and accumulation of infinitesimally small inherited modifications, each profitable to the preserved being; and as modern geology has almost banished such views as the excavation of a great valley by a single diluvial wave, so will natural selection, if it be a true principle, banish the belief of the continued creation of new organic beings, or of any great and sudden modification in their structure.
Using “Darwinism” as synonymous with “evolutionary biology” is thus a touch unfair to the men and women who have contributed to the scientific edifice to which Darwin provided the cornerstone, including (to name a few) Wallace, Huxley, Weisman, De Vries, Romanes, Morgan, Weidenreich, Teilhard, von Frisch, Vavilov, Wright, Fisher, Muller, Haldane, Dobzhansky, Rensch, Ford, McClintock, Simpson, Hutchinson, Lorenz, Mayr, Delbrück, Jukes, Stebbins, Tinbergen, Luria, Maynard Smith, Price, Kimura, Ostrom, Wilson, Hamilton, and Gould, to say nothing of even more who are still contributing to evolutionary biology. As Olivia Judson (2008) recently commented, terms like “Darwinism” “suggest a false narrowness to the field of modern evolutionary biology, as though it was the brainchild of a single person 150 years ago, rather than a vast, complex and evolving subject to which many other great figures have contributed.”
Although much remains obscure, and will long remain obscure, I can entertain no doubt, after the most deliberate study and dispassionate judgement of which I am capable, that the view which most naturalists entertain, and which I formerly entertained — namely, that each species has been independently created — is erroneous. I am fully convinced that species are not immutable; but that those belonging to what are called the same genera are lineal descendants of some other and generally extinct species, in the same manner as the acknowledged varieties of any one species are the descendants of that species. Furthermore, I am convinced that Natural Selection has been the main but not exclusive means of modification.
I HAVE hitherto sometimes spoken as if the variations so common and multiform in organic beings under domestication, and in a lesser degree in those in a state of nature had been due to chance. This, of course, is a wholly incorrect expression, but it serves to acknowledge plainly our ignorance of the cause of each particular variation. Some authors believe it to be as much the function of the reproductive system to produce individual differences, or very slight deviations of structure, as to make the child like its parents. But the much greater variability, as well as the greater frequency of monstrosities, under domestication or cultivation, than under nature, leads me to believe that deviations of structure are in some way due to the nature of the conditions of life, to which the parents and their more remote ancestors have been exposed during several generations.
[Hat Tip: RichardDawkins.net]
Darwin's greatest idea was that natural selection is largely responsible for the variety of traits one sees among related species. Now, in the beak of the finch and the fur of the mouse, we can actually see the hand of natural selection at work, molding and modifying the DNA of genes and their expression to adapt the organism to its particular circumstances.So Darwin was right about the idea that natural selection is the mechanism that generates most traits among related species.
The affinities of all the beings of the same class have sometimes been represented by a great tree. I believe this simile largely speaks the truth. The green and budding twigs may represent existing species; and those produced during each former year may represent the long succession of extinct species. At each period of growth all the growing twigs have tried to branch out on all sides, and to overtop and kill the surrounding twigs and branches, in the same manner as species and groups of species have tried to overmaster other species in the great battle for life. The limbs divided into great branches, and these into lesser and lesser branches, were themselves once, when the tree was small, budding twigs; and this connexion of the former and present buds by ramifying branches may well represent the classification of all extinct and living species in groups subordinate to groups. Of the many twigs which flourished when the tree was a mere bush, only two or three, now grown into great branches, yet survive and bear all the other branches; so with the species which lived during long-past geological periods, very few now have living and modified descendants. From the first growth of the tree, many a limb and branch has decayed and dropped off; and these lost branches of various sizes may represent those whole orders, families, and genera which have now no living representatives, and which are known to us only from having been found in a fossil state. As we here and there see a thin straggling branch springing from a fork low down in a tree, and which by some chance has been favoured and is still alive on its summit, so we occasionally see an animal like the Ornithorhynchus or Lepidosiren, which in some small degree connects by its affinities two large branches of life, and which has apparently been saved from fatal competition by having inhabited a protected station. As buds give rise by growth to fresh buds, and these, if vigorous, branch out and overtop on all sides many a feebler branch, so by generation I believe it has been with the great Tree of Life, which fills with its dead and broken branches the crust of the earth, and covers the surface with its ever branching and beautiful ramifications.
It took evolutionary biologists nearly 150 years, but at last we can agree with Darwin that the origin of species, "that mystery of mysteries" (1), really does occur by means of natural selection (2–5). Not all species appear to evolve by selection, but the evidence suggests that most of them do. The effort leading up to this conclusion involved many experimental and conceptual advances, including a revision of the notion of speciation itself, 80 years after publication of On the Origin of the Species, to a definition based on reproductive isolation instead of morphological differences (6, 7).I've heard this a lot recently but it doesn't make sense to me. How could the evolution of reproductive isolation be selected?
The main question today is how does selection lead to speciation? What are the mechanisms of natural selection, what genes are affected, and how do changes at these genes yield the habitat, behavioral, mechanical, chemical, physiological, and other incompatibilities that are the reproductive barriers between new species? As a start, the many ways by which new species might arise by selection can be grouped into two broad categories: ecological speciation and mutation-order speciation. Ecological speciation refers to the evolution of reproductive isolation between populations or subsets of a single population by adaptation to different environments or ecological niches (2, 8, 9). Natural selection is divergent, acting in contrasting directions between environments, which drives the fixation of different alleles, each advantageous in one environment but not in the other. Following G. S. Mani and B. C. Clarke (10), I define mutation-order speciation as the evolution of reproductive isolation by the chance occurrence and fixation of different alleles between populations adapting to similar selection pressures. Reproductive isolation evolves because populations fix distinct mutations that would nevertheless be advantageous in both of their environments. The relative importance of these two categories of mechanism for the origin of species in nature is unknown.Is there an expert on speciation out there who can explain this? I understand how two incipient species can adapt to different environments and become morphologically distinct but I don't understand how this kind of adaptation leads to selection for reproductive isolation. This is a problem that we discussed earlier [Testing Natural Selection: Part 2].
The most obvious shortcoming of our current understanding of speciation is that the threads connecting genes and selection are still few. We have many cases of ecological selection generating reproductive isolation with little knowledge of the genetic changes that allow it. We have strong signatures of positive selection at genes for reproductive isolation without enough knowledge of the mechanisms of selection behind them. But we hardly have time to complain. So many new model systems for speciation are being developed that the filling of major gaps is imminent. By the time we reach the bicentennial of the greatest book ever written, I expect that we will have that much more to celebrate.Given our lack of knowledge how can biologists be so confident that Darwin was right? How do they know that most speciations are due to natural selection and not random genetic drift—especially since drift and accident seem to be intuitively more likely?
Schluter, D. (2009) Evidence for Ecological Speciation and Its Alternative. Science 323: 737 - 741 [DOI: 10.1126/science.1160006]
It is a truly wonderful fact the wonder of which we are apt to overlook from familiarity that all animals and all plants throughout all time and space should be related to each other in group subordinate to group, in the manner which we everywhere behold namely, varieties of the same species most closely related together, species of the same genus less closely and unequally related together, forming sections and sub-genera, species of distinct genera much less closely related, and genera related in different degrees, forming sub-families, families, orders, sub-classes, and classes. The several subordinate groups in any class cannot be ranked in a single file, but seem rather to be clustered round points, and these round other points, and so on in almost endless cycles. On the view that each species has been independently created, I can see no explanation of this great fact in the classification of all organic beings; but, to the best of my judgment, it is explained through inheritance and the complex action of natural selection, entailing extinction and divergence of character, as we have seen illustrated in the diagram.
Billions of dollars in science infrastructure investments have been overshadowed by cuts to major grant-funding programmes in Canada's federal budget....
Although the budget does contain Can$87.5 million for graduate-student scholarships, the research community is perplexed by the government's decision to cut funding to Canada's three federal granting councils. Over three years, the budgets of the Canadian Institutes of Health Research, the Natural Sciences and Engineering Research Council and the Social Sciences and Humanities Research Council will be reduced by almost Can$148 million. "It's an unfortunate consequence of getting poor advice or not listening to good advice," says Aled Edwards, a structural biologist at the University of Toronto, Ontario, and director and chief executive of the international Structural Genomics Consortium. He argues that the most efficient way to invest in research is through the funding councils, where peer review determines where the dollars are spent....
But the long-term effect of cutting funds for research may be that Canadian scientists will take their research south of the border, says Edwards. Canada's research funding pales in comparison with that in the United States, and the latest budget threatens to widen the gap between the two countries, he adds. "We're at serious risk of a brain drain."