More Recent Comments

Showing posts with label Science. Show all posts
Showing posts with label Science. Show all posts

Monday, July 11, 2016

Nature journal tries to fix the problem of a scientific literature that's too complex to understand

I recently posted some thoughts on the complexity of the scientific literature noting that many papers are simply too difficult to understand. This includes papers that are well within my areas of interest [How to read the scientific literature? and The scientific literature is becoming more complex].

Nature journal recognizes that there's a problem. A few weeks ago (June 16, 2016) they published a brief comment on Nature distilled.

They begin by describing the problem ...
Any journal that tries to publish the most important results that it is sent, in all fields of science, will run into the same problem. Every bit of our output, we hope, is useful and interesting to somebody somewhere. But even the most optimistic of our editors would concede that the pool of readership for each of these specific advances is only a small subsection of our audience, professional researchers included. To the outside world, science is science. To those who read Nature, science is a multiplicity of specialisms — and specialists.

We know that most of you are specialists, and that you don’t read most of what we present to you. You’re busy people. It is hard enough to follow the literature that you need to read. Even the titles of research papers in an unfamiliar field can look incomprehensible. But if you’re anything like us, one reason you got into science in the first place was curiosity about the world — and not just the tiny piece of it that you now focus on. Wouldn’t it be useful and interesting to keep better track of the rest? Or at least, the rest that is published in Nature, and therefore already judged to be important?
Let's make one thing clear. It's not just the complexity of a paper that's the problem and it's not just that the science isn't explained in easy to understand sentences. There's also the more serious problem of content. Sometimes the papers are hard to understand because the significance of the results is exaggerated and its importance is not placed in proper context.

The ENCODE papers are good examples of this problem. It wasn't easy to understand that they did but, more importantly, it wasn't easy to understand the significance of their results because the authors didn't explain their results very well. They made unsubstantiated claims.

Here's how Nature hopes to fix the problems they identified.
We think so, and this week we begin an experiment to see how many of you agree. We have revisited 15 recently published Nature papers and asked the authors to produce two-page summaries of each. The summaries remain technical — these are not articles suitable for the popular press — but they try to communicate both the research advance and why it matters. The authors of these papers have been enthusiastic — they want the broadest possible readership — and we thank them for their cooperation. Now we want to know what you think. The first three summaries are published online this week (see go.nature.com/1uhcy3x). The rest will be released in the coming weeks. Please take a look. Be brave — pick a topic that you expect to struggle with — and then fill in the online survey to let us know what you think. The rest will be released in the coming weeks. Please take a look. Be brave — pick a topic that you expect to struggle with — and then fill in the online survey to let us know what you think.
I looked at two papers that were about biology and I didn't think the summaries added anything to my understanding. That's partly because the papers weren't that hard to understand in the first place if you were just satisfied with knowing what they did.

Both papers raised lots of questions in my mind about the biological significance of the studies and whether they were accurate and reproducible. The author summaries didn't help much. [Non-coding recurrent mutations in chronic lymphocytic leukaemia and DNA-dependent formation of transcription factor pairs alters their binding specificity].

If the scientific literature is difficult to understand, and it is, then there's a problem with the authors. They aren't able to explain what they did in a reasonable manner and they aren't able to place their work in a proper context so we can evaluate the significance of the result. Asking them to try again (and doubling their citations) is probably not going to help.

The ENCODE authors couldn't do it.

It's a lot like asking the fox to guard the henhouse.



Sunday, July 03, 2016

The scientific literature is becoming more complex

A recent paper by Cordero et al. (2016) looked at the biological scientific literature in 1993, 2003, and 2013. They found that the average publishable unit (APU) almost doubled in twenty years. There were substantial increases in the number of tables & figures and the number of panels per figure. The number of pages increased as did the number of references and the number of authors.

I agree that papers are becoming more complex and more difficult to understand for the average scientist; especially those outside of the specific field of study. The authors of this study point out a number of problems with this increase. I'd like to highlight one of them.

With respect to the number of authors, they say,
Concomitantly, with the increase in information density we note a significant increase in the number of authors per article that also correlated with the average IF of the journal. Since the famous de Solla Price predictions [38], trends toward an increasing number of authors per publication have been widely documented [23,39–44]. Such a trend of increasing collaboration could be explained by the causes suggested above for the growth of information density. The costs associated with the generation of cutting-edge scientific information, the funding restrictions, and the associated risks in scientific publishing in a “winner-take-all” reward system [45] may motivate scientists to team-up, pool resources and fractionate the risks through co-authoring. Also, the increasing complexity of scientific research has resulted in greater specialization of scientists [46], which in turn suggests that the inclusion of additional techniques requires the recruitment of additional investigators to provide that data and thus serve as co-authors. This trend could have both positive and negative consequences. Increased interaction between scientists in diverse fields could translate into greater communication and the possibility for advances at the interfaces of different disciplines. On the other hand, an increase in the number of authors, some of whom bring highly specialized knowledge, could result in reduced supervision of larger groups, and less responsibility per author for the final product and reduced integration of data.
I think the major consequence is the lack of responsibility of individual authors in a multi-author study. With increased specialization, there are fewer and fewer authors who see the big picture and who are capable of integrating the results from several subspecialties. The fact that the studies include work from several highly specialized techniques that only a few people understand also makes it harder for the average reader to evaluate the paper.

It's likely, in my opinion, that many of the authors on the paper don't fully understand the techniques being used by their colleagues. This is a big change from the science I grew up with.

Cordero et al. are worried about the possibility of fraud.
The growth in authors brings with it the concerns about the possibility that as more authors are added, there is an increased likelihood of some individuals with reduced integrity and capable of misconduct joining the group. In this regard, we note that the inclusion of one individual who has been accused of misconduct in numerous studies has led to dozens of retractions of scientific publications.
This is a very real danger but I think that outright fraud is not a significant worry. What concerns me more is the tendency to gloss over the limitations and possible misinterpretations of complex data analyses. The specialist who performs these analyses probably doesn't intend to misrepresent or exaggerate the significance of the result; it's just that they have become so used to using a particular technique (i.e. a software package) that they have forgotten those limitations. They don't communicate them to their colleagues who, because they don't understand the technique, don't realize there's a problem.

Cordero et al. summarize their results ....
In summary, our study documents a change in the literature of the biological sciences toward publications with more data over time. The causes for these trends are complex and probably include increasing experimental options and changes to the culture of science. At first glance, this data could be interpreted as a cultural change opposite to data fragmentation practices. However, it is also possible that an increase in publication density can still occur over a ‘salami slicing’ culture if the publication unit to be segregated is larger to begin with, as the result of technological improvements and increasing numbers of scientific authors. The benefits and debits of this trend for the scientific process are uncertain at this time but it is clear that there have been major changes to the nature of scientific publications in the past two decades that are likely to have major repercussions in all aspects of the scientific enterprise.
I think they're on to something.


Cordero, R. J., de León-Rodriguez, C. M., Alvarado-Torres, J. K., Rodriguez, A. R., and Casadevall, A. (2016). Life Science’s Average Publishable Unit (APU) Has Increased over the Past Two Decades. PloS one, 11(6), e0156983. [doi: 10.1371/journal.pone.0156983]

Friday, July 01, 2016

How to read the scientific literature?

Science addressed the problem of How to (seriously) read a scientific paper by asking a group of Ph.D. students, post-docs, and scientists how they read the scientific literature. None of the answers will surprise you. The general theme is that you read the abstract to see if the work is relevant then skim the figures and the conclusions before buckling down to slog through the entire paper.


None of the respondents address the most serious problems such as trying to figure out what the researchers actually did while not having a clue how they did it. Nor do they address the serious issue of misleading conclusions and faulty logic.

I asked on Facebook whether we could teach undergraduates to read the primary scientific literature. I'm skeptical since I believe it takes a great deal of experience to be able to profitably read recent scientific papers and it takes a great deal of knowledge of fundamental concepts and principles. We know from experience that many professional scientists can be taken in by papers that are published in the scientific literature. Arseniclife is one example and the ENCODE papers published in September 2012 are another. If professional scientists can be fooled, how are we going to teach undergraduates to be skeptical?

Monday, June 06, 2016

Can scientists describe what they're doing to a fifth grader?

I'm working on a review of "The Gene" by Siddhartha Mukherjee. It raises a huge number of issues about science writing and the conflict between producing a bestseller and educating the public about science.

As part of the research for that blog post I've been reading all the reviews of his book and I came across an interview with Mukherjee on the Smithsonian website [Siddhartha Mukherjee Follows Up Biography of Cancer With “An Intimate History” of Genetics].

Here's an interesting answer to an important question ...

Saturday, March 19, 2016

God, Science, and the Universe

Today's the day we find out "What's Behind It All?" The decision will be announced at the University of Toronto (Toronto, Ontario, Canada) by Lawrence Krauss when he educates the audience at Convocation Hall starting at 7 pm. Stephen Meyer (Intelligent Design Creationist) and Denis Lamoureux (Theistic Evolution Creationist) will also be there to learn the answer. (Spoiler Alert: the answer is "nothing.")
It's not too late to buy tickets. Email me if you want to join some of us for dinner before the event.

The event is being sponsored by Wycliffe College at the University of Toronto. This is an Anglican College that trains people to become Anglican Ministers (among other things). The college is the prime mover behind this series of events and it deserves a great deal of credit for the effort. Co-sponsors include the Centre for Inquiry, Canada and three Christian groups.


The event is being video-hosted at many locations around the world. See the list here. If you don't want to watch with others, you can see the live stream on YouTube at: Krauss, Meyer, Lamoureux: What’s Behind it all? God, Science and the Universe. It starts at 7 pm EST. (It's probably over already in Australia.)

The ID crowd is already anticipating defeat so they're preparing their audience by warning them that Lawrence Krauss will be nasty (i.e. refute their arguments) [see Watch Meyer Take on Krauss and Lamoureux, Streaming Live at Evolution News on March 19]. (Warning: check your irony meters before reading the first paragraph.)
Those on the Darwinist, materialist, atheist side of the debate that we follow here aren't normally very good at listening and responding to scientific perspectives at variance from their own. They are much more interested in condemning and ridiculing -- which has got to be a poor strategy for them if they want to persuade anyone.

With that as the background, as we noted already, it's refreshing that arch-atheist cosmologist Lawrence Krauss has agreed to participate in a public conversation with Discovery Institute's Stephen Meyer, joined by theistic evolutionist Denis Lamoureux. That will be March 19 at the University of Toronto's Convocation Hall. We're looking forward to it -- and here's the even better news. You won't have to be in Toronto to enjoy the discussion. The event will stream live here at Evolution News.


Monday, February 22, 2016

God, Science, and the Universe

Hosted by Wycliffe College at the University of Toronto (Toronto, Ontario, Canada): Religion and Society Series - God, Science and the Universe.
Has a scientific explaination of the universe replaced the need for God as cause of its origins? Could life on our planet exist apart from divine intervention? Is there evidence for a designer?

On March 19th, three big thinkers, well-known in their various fields, will be together for the first time, on the stage at the University of Toronto’s Convocation Hall discussing God, science and the universe:
  • Lawrence M. Krauss  World-renowned Theoretical Physicist
  • Stephen C. Meyer Cambridge educated author and intelligent design advocate
  • Denis O. Lamoureux Science and Religion professor from the University of Alberta
Questions like these will be posed to the panel:
  • How did the universe originate?
  • Does God play any role in the cosmos?
  • What is the relationship between science and religion?
You are invited to live-stream this event via YouTube at your venue free of charge. Once you register as an event host, Wycliffe College and our partners will be happy to provide you with promotional and follow-up material to help make your event a success.

As evidenced by our sponsors, this is an opportunity that spans the diverse interests and questions of the scientist, the scholar, the layperson, the young and the old, and the Atheist, Agnostic and Christian. Our goal is to be a catalyst in starting conversations around our country on issues of faith and their intersection with broader society. 

Join thousands in Toronto and around the globe to take part in this rare and exciting opportunity. 

Monday, January 25, 2016

Thursday, January 14, 2016

Model organisms and translational research

Ewan Birney (Genomic's Big Talker of ENCODE notoriety) has a new post called In defence of model organisms.

He brings up two points that are worth discussing.

What is a model organism?

There are two common definitions. Birney leans toward defining a model organism as one that models human biochemistry and physiology. This is a common definition. It emphasizes the meaning of "model" as "model of something."

Wednesday, November 25, 2015

In defense of curiosity-motivated research

I was prompted to write this post by three recent events. First, I read an article by Angelika Amon who made A case for more curiosity-driven basic research. She is the recipient of the 2015 ASCB [American Society for Cell Biology] Women in Cell Biology Sandra K. Masur Senior Leadership Award.

She says,
While conducting research to improve the lives of others is certainly a worthy motivation, it is not the main reason why I get up very early in the morning to go to the lab. To me, gaining an understanding of a basic principle in the purest Faustian terms is what I find most rewarding and exciting.

... For me, having a career in curiosity-driven basic research has been immensely rewarding. It is my hope that basic research remains one of the pillars of the American scientific enterprise, attracting the brightest young minds for generations to come. We as a community can help to make this a reality by telling people what we do and highlighting the importance of our work to their lives.
I agree wholeheartedly with this sentiment although I would emphasize that the general public needs to understand that the important result of basic research is knowledge, and knowledge for its own sake is important. It's certainly far better than ignorance.

This kind of scholarly activity—curiosity motivated research—is the backbone of activity in the universities. At least it used to be. I still think that universities should stand up and defend the search for knowledge.

The second stimulus was an acknowledgement I recently stumbled across at the end of a paper by Ford Doolittle from 1982 (Doolittle, 1982).
And I' m most grateful to the Medical Research Council and the Natural Sciences and Engineering Research Council of Canada for providing us with the funds to pursue our sometimes arcane interests without hindrance.
The old MRC has become CIHR. It's hard to imagine any scientist writing such an acknowledgement today since CIHR is notorious for hindering basic curiosity-motivated research [see Support basic research with new leaders at the Canadian Institutes of Health Research (CIHR)].

Not only have the funding agencies abandoned curiosity-motivated research, so have the universities and that brings me to the third event. My university, the University of Toronto, has been trying to direct health research for several decades. It does this by preferentially funding and supporting research in designated areas that are likely to become the beneficiaries of substantial donations and/or support from the private sector. This emphasis often goes hand-in-hand with government wishes and the subverted goals of the funding agencies they control.

The latest example is a new research facility across the street from the main campus in a brand-new, expensive, building that's part of MaRS [U of T expands research facilities in new partnership with MaRS].
The first U of T groups to move over to the new MaRS tower are the Medicine by Design initiative, the Ted Rogers Centre for Heart Research, the Centre for Commercialization of Regenerative Medicine, and the ARCNet advanced research computing and data analytics centre. Other research groups from the Faculty of Medicine will move to MaRS to enhance existing networks in regenerative medicine, drug discovery and infectious disease.
The idea here is to take successful, well-funded, research groups from different campus-based basic science departments and group them together in units that focus on, for example, drug discovery and infectious diseases. They will get all the perks of a new building and new research facilities and enhanced prestige and recognition.

Meanwhile, those researchers working on basic curiosity-motivated projects like Drosophila development, the targeting of cellular RNAs, the survival of mitochondria, theoretical investigations of protein folding, the structure of glycoproteins, and protein turnover in yeast and bacteria—to name just a few—will remain in a 50 year old building that looks more like a prison than a modern research facility. The message is loud and clear. Curiosity-motivated basic researchers are second class scientists unless they just happen to be working on projects that Faculty administrators think are important

That's not how universities should behave. I expect university leaders and administrators to stand up for the search for knowledge and promote the rights of researchers to go where curiosity takes them. That's what academic freedom is all about.

I think you can make a case that grouping like-minded researchers together in specific goal-oriented research groups may not be the most successful strategy in a university environment even if you concede that it's up to universities to pick and choose research priorities. It reminds me of a discussion I had with Janet Stemwedel a few years ago. The discussion started off on the topic of ethics then changed to the difference between "science" and "technology." It applies also to the difference between curiosity-motivated research and goal-oriented research.

Is ‘what is this good for?’ a question to be discouraged?
Teaching Ethics in Science: Science v Technology
A worker in basic scientific research is motivated by a driving curiosity about the unknown. When his explorations yield new knowledge, he experiences the satisfaction of those who first attain the summit of a mountain or the upper reaches of a river flowing through unmapped territory. Discovery of truth and understanding of nature are his objectives. His professional standing among his fellows depends upon the originality and soundness of his work. Creativeness in science is of a cloth with that of the poet or painter.
National Science Foundation (USA) Annual Report 1953
I'm not arguing that scientists who are interested in drug discovery or infectious diseases aren't motivated by curiosity just like the rest of us. What I'm arguing is that it should not be the university's business to reward those whose curiosity leads them in one direction and penalize those who are curious about something else. That's sending a strong message and the message is "go in this direction" if you want the perks. That's not compatible with supporting curiosity-motivated research and the quest for knowledge in its purest form.

Maybe the university needs to stop supporting curiosity-motivated research? That's worth debating but in my experience debate is not what university administrators want to hear. It's rare that professors and researchers are invited to discuss the decisions made in the President's Office or the Dean's Office even though those decisions will seriously affect their lives and their careers.

Why can't we at least discuss these issues rather than read about them in the newspaper?


Doolittle, W.F. (1982) Evolutionary molecular biology: where is it going? Canadian Journal of Biochemistry, 60:83-90.

Support basic research with new leaders at the Canadian Institutes of Health Research (CIHR)

An important article in the Ottawa Citizen calls for the resignation of Alain Beaudet, recently reappointed President of the Canadian Institutes of Health Research (CIHR) ['Demoralized' scientists demand changes at $1B health research agency]. Criticism comes from Michael Rudnicki but he is merely voicing what lots of other researchers feel.
“He has rammed through what he calls reforms which have radically altered the grant delivery system and the system for evaluating grants has been done in a way that distorts the entire process,” said Rudnicki of changes brought in by Beaudet.

Top research scientists from across the country, in interviews with the Citizen, described their mood as demoralized and deeply disturbed by what has been going on at the CIHR. “There is a lot of scorched earth out there,” said one.

According to researchers, the malaise cannot be fixed by simply unmuzzling government scientists. The federal government needs to support basic scientific research, they say, with more money and with a system that is transparent and designed to reward the country’s best and brightest researchers. Instead, researchers say, a series of recent changes at the agency that funds a billion dollars of research each year, notably to the peer review system, have done the opposite.

“The entire research community is very upset and extremely concerned about these changes,” said Rudnicki.

Among concerns are that basic research is getting an ever-smaller share of flatlined funding, in favour of applied or targeted research. Some independent scientists working in labs — doing the kind of work that has led to discoveries such as stem cells — are finding it increasingly difficult to keep going.
The President of CIHR is essentially a government appointee and he or she is not beholding to the researchers (clients) in any legal way. However, I have long advocated that the leadership of CIHR, and the other government funding agencies, should deserve the confidence of the Canadian Research Community and they should resign if they do not have that confidence.

That time has come. Not only has CIHR discouraged basic curiosity-motivated research but the effect of their policies has encouraged university administrators to do the same. We see more and more university resources going into directed research on specific applied targets and the few remaining basic researchers are treated as second class citizens left in the oldest, out-dated, facilities with the fewest university resources.

I will gladly sign any petition calling for the resignation of the CIHR leaders and anyone else who supports their disastrous policies.


Friday, November 06, 2015

Canada's new Minister of Science, Kirsty Duncan, is NOT a Nobel Prize winner

Canada has a new government under the Liberal Party and a new Prime Minister, Justin Trudeau. I'm very excited about this change. I'm a member of the Liberal Party of Canada and I voted for the Liberal Candidate in my riding.

One of the big changes is supposed to be increased transparency of government, more openness with the press, and a promise to base decisions on evidence and science. In other words, truth is supposed to be the new buzzword on Parliament Hill. Trudeau's new cabinet even has a Minister of Science, unlike previous cabinets.

Wednesday, November 04, 2015

Was Jesus a real person? - see what denialism looks like

Jerry Coyne wrote up something about the historical Jesus where he suggested that there wasn't much evidence for his existence: BBC poll: 40% of Brits don’t believe that “Jesus was a real person,” but BBC assumes he was!].

Here's what Jerry said,
Now I may be wrong, but the more I read this, the more I think that reader Ant was right in his interpretation. What’s more galling is that the BBC is taking what “many scholars believe” as the gospel truth—pardon the pun—despite the fact that close scrutiny gives virtually no extra-Biblical evidence for a historical Jesus. I’m still convinced that the judgement of scholars that “Jesus was a real man” comes not from evidence, but from their conviction that the Bible simply couldn’t be untruthful about that issue. But of course we know of cases where myths grew up that weren’t at bottom derived from a historical individual.
There's nothing particularly wrong with what Jerry says. As far as I know the evidence that Jesus actually existed is not strong and, even more importantly, there's no independent evidence that he rose from the dead or performed miracles.

Friday, October 23, 2015

Nature publishes a misleading history of the discovery of DNA repair

The history of DNA repair is well-known. Here's a quote from "Early days of DNA repair: discovery of nucleotide excision repair and homology-dependent recombinational repair" by W.D. Rupp in 2013 (Rupp, 2013).
This article describes events related to the first papers published in the 1960s describing nucleotide excision repair (NER) and homology-dependent recombinational repair.
Here's are the relevant papers.
Setlow, R.B., and Carrier, W.L. (1964) The disappearance of thymine dimers from DNA: An error-correcting mechanism. Proc. Natl. Acad. Sci. (USA) 51:226–231. [Full Text]

Boyce, R.P., Howard-Flanders, P. (1964) Release of ultraviolet light-induced thymine dimers from DNA in E. coli K-12. Proc. Natl. Acad. Sci. (USA) 51:293–300. [Full Text]

Pettijohn, D, and Hanawalt, P. (1964) Evidence for repair-replication of ultraviolet damaged DNA in bacteria. J. Mol. Biol. 9:395–410. [PubMed]

Thursday, October 22, 2015

Café Scientifique in Mississauga

Some of you might recall that I gave a presentation at a Café Scientifique in Mississauga (Ontario, Canada) [Café Scientifique]. It was a lot of fun and there were many interesting people at the meeting.

The new season continues on Monday, October 26h with a meeting at 7 pm at The Franklin House, 263 Queen St S., in Streetsville, Mississauga (Ontario Canada) [see Meetup]. Come and join us for a discussion about teaching critical thinking in Ontario schools. My friend Chris DiCarlo is the speaker.

Come hear TVO 2008 Best Lecturer winner Christopher DiCarlo talk about “Introducing Standard Critical Thinking Skills to Ontario High Schools”.

The topic follows Dr. DiCarlo's efforts over the last five years or so to personally lobby the Ministry of Education and various School Boards in an effort to start a pilot project which introduces both teachers and students to the value of basic Critical Thinking skills. The Pilot Project began in September, 2014 with the Upper Grand District School Board. The first year of the project was a great success. It is now entering its 2nd phase which involves the development of video footage and written materials for Learning Modules which will be made available to all teachers throughout Ontario and eventually, Canada. These modules can be used for any grades, though they are intended for grades 9 and 10 in order to introduce these skills as early as possible in High School. The eventual plan also includes the development of a stand-alone course for Grade 12.

Dr. Christopher DiCarlo is a philosopher, educator, and author. He currently teaches in the Faculties of Philosophy at the University of Toronto and Ryerson University. He is also a lifetime member of Humanist Canada and an Expert Advisor for the Centre for Inquiry Canada.

He has been invited to speak at numerous national and international conferences and written many scholarly papers ranging from bioethics to cognitive evolution. His latest book entitled: How to Become a Really Good Pain in the Ass: A Critical Thinker’s Guide to Asking the Right Questions was released worldwide by Prometheus Press in August, 2011 and is currently in its fifth printing and is a best-seller in the U.S.

He is currently working on his latest book tentatively entitled: Flying Without A Pilot: A Determined Look at the Future of Ethics, Law, and the Value of Human Behavior.

In April, 2008 he was awarded TV Ontario’s Big Ideas Best Lecturer in Ontario Award for his lecture “The Relations of Natural Systems”.

In August, 2008, he was honoured with the Canadian Humanist of the Year Award from the Humanist Association of Canada.

Dr. DiCarlo is the Director of Critical Thinking Solutions, a consulting business for individuals, corporations, and not-for-profits in both the private and public sectors. He is also the developer of the first Pilot Project in Canada to introduce Standardized Critical Thinking skills into the Ontario Public High School curriculum which has begun in the Upper Grand District School Board.


Wednesday, October 21, 2015

The quality of the modern scientific literature leaves much to be desired

Lately I've been reading a lot of papers on genomes and I've discovered some really exceptional papers that discuss the existing scientific literature and put their studies in proper context. Unfortunately, these are the exceptions, not the rule.

I've discovered many more authors who seem to be ignorant of the scientific literature and far too willing to rely of the opinions of others instead of investigating for themselves. Many of these authors seem to be completely unaware of controversy and debate in the fields they are writing about. They act, and write, as if there was only one point of view worth considering, theirs.

How does this happen? It seems to me that it can only happen if they find themselves in an environment where skepticism and critical thinking are suppressed. Otherwise, how do you explain the way they write their papers? Are there no colleagues, post-docs, or graduate students who looked at the manuscript and pointed out the problems? Are there no referees who raised questions?

Wednesday, September 30, 2015

Jerry Coyne retires

We knew this was coming but it's still a noteworthy event [I retire today].

I like what Jerry Coyne says about his career, so far, but one particular section caught my eye.
Several years ago, I began to realize that my job as a scientist and academic was not as challenging as it had been for the previous 35 years. I had mastered the requisites of such a job: doing research, writing papers, mentoring and teaching students, getting grants, and so on. The one challenge left was discovering new things about evolution, which was the really exciting thing about science. I’ve always said that there is nothing comparable to being the first person to see something that nobody’s seen before. Artists must derive some of the same satisfaction when creating new fictional worlds, or finding new ways to see the existing world, but it is only those who do science—and I mean “science” in the broad sense—who are privileged to find and verify new truths about our cosmos.

But finding truly new things—things that surprise and delight other scientists—is very rare, for science, like Steve Gould’s fossil record, is largely tedium punctuated by sudden change. And so, as I began to look for more sustaining challenges; I slowly ratcheted down my research, deciding that I’d retire after my one remaining student graduated. That decision was made two years ago, but the mechanics of retirement—and, in truth, my own ambivalence—have led to a slight delay. Today, though, is the day.
For me, the pace of discovery in the lab was far too slow. Yes, it's true that you can be the very first person ever to see something that nobody has ever seen before but those "somethings" are often trivial. I learned that there was a heck of a lot that I didn't know but other people did. Furthermore, I needed to know all that stuff before I could really interpret my own lab results.

It was far more efficient, and far more exciting, for me to learn facts and information from others than to try and discover something truly important in my own lab.

That's why I decided to concentrate on writing, especially biochemistry textbooks. It was my opportunity to learn about everything and my opportunity to teach others about what was important and what was not important. It was my opportunity to think about biochemistry and evolution. That was much more satisfying, intellectually, than the tedium of everyday lab work. I was cocky enough to believe that I, personally, could contribute more to science through theory (and teaching) than through working at the bench.

As it turned out, I found far more ways of "seeing the existing world," as Jerry puts it, though reading, thinking, and teaching than I ever did by cloning a gene and studying its expression. So far, none of those ways are terribly original but they're at least new to me. And many of them are new to all the people around me who I keep pestering whenever I come across something interesting.

Nowadays, the tedium of stasis in everyday science isn't the only problem facing young scientists. There's also the tedium of grant writing and the tedium (and stress) of not getting a grant to keep your lab running. Perhaps they should get out of that rat race. We need more thinking in science and not more ChIP assays or RNA-Seq experiments.

I'd like to create an Institute for Advanced Study based on the Princeton model but with an emphasis on biology. I think we need to celebrate and honor thinking biologists and not just "doers" who run megalabs churning out more ENCODE results, or the genome sequence of a new species, or the 1001st human genome sequence.

I can think of a dozen scientists who I would hire right away if I had the money. Can you imagine how exciting it would be to put them all in one place where they can interact and be creative?

Maybe I should apply for a Templeton grant?


Sunday, September 20, 2015

Café Scientifique in Mississauga

Some of you might recall that I gave a presentation last June on "Replaying the Tape of Life" at a Café Scientifique in Mississauga )(Ontario, Canada) [Café Scientifique]. It was a lot of fun and there were many interesting people.

The new season begins tomorrow with a meeting at 7 pm at The Franklin House, 263 Queen St S., in Streetsville, Mississauga (Ontario Canada) [see Meetup]. Come and join us for a discussion about science outreach ...
Come hear Randy Attwood, Executive Director of the Royal Astronomical Society of Canada, interviewed for a Star Spot podcast by host Justin Trottier.

In his interviews at the Star Spot, Mr. Trottier aims to go beyond the science under discussion to explore the implications of specific discoveries, why we explore, and how to engage the public in scientific pursuits. Where applicable The Star Spot dives into the intersection of science, philosophy and life's big questions.

Randy is Executive Director of the Royal Astronomical Society of Canada and founder of the RASC Mississauga Centre. He is co-organizer of the Mississauga Star Gazers meetup group and of the monthly Observe the Moon and planets through large telescopes event at Riverwood Conservancy. He is a frequent guest on CTV called upon to explain astronomy and space exploration news.

An Engineering Science graduate of the University of Toronto, Justin is best is a frequent guest on radio and TV programs discussing church-state separation, skeptical inquiry and fundamental freedoms. While known to many of us as the founder of Center for Inquiry Canada (CFIC) as well as of the Freethought Association of Canada, the range of his interests is very broad. He is a founder of the U of T Astronomy and Space Exploration Society and a former board member of the Canadian Space Society.
Don't be shy about joining us. There are plenty of newcomers at each meeting. All you have to do is walk upstairs at the restaurant and order your beer (and food if you're hungry)!


Sunday, August 30, 2015

Ten discoveries that would change the way we think about ourselves

New Scientist has published a list of ten ideas that, if true, would change the way we perceive ourselves and our place in the universe [World Turned Upside Down]. I think some of them are pretty good—many of them really would have a profound effect. Of course, some of them are never going to happen and some of them are silly. One of them is already true.

Here they are ...
  1. What if most of reality is hidden?
  2. What if we discover we can see the future?
  3. What if we learn to talk to animals?
  4. What if we are not alone?
  5. What if we don't need bodies?
  6. What if we have no free will?
  7. What if we came from space?
  8. What if intelligence is a dead end?
  9. What if the universe is an illusion?
  10. What if we find god?

Thursday, July 30, 2015

An accomodationist defends the science of the Pope in the journal Nature

I don't think scientific journals or scientific organizations should take a position on the conflict between science and religion but that doesn't mean they should stay away from the subject altogether. The journal Nature has just (July 28, 2015) published a defense of accomodationism written by David M. Lodge [Faith and science can find common ground]. Lodge describes himself as a "Protestant ecologist embedded for 30 years in a Roman Catholic university." The Catholic University is Notre Dame [see David M. Lodge].

His main argument is that the current Pope understands the science of the environment and has spoken out in favor of protecting the environment. David Lodge thinks this represents an accomomodation between science and religion.

Saturday, July 11, 2015

Science and skepticism

The National Academies of Sciences (USA) formed a committee to look into scientific integrity. A summary of the report was published in the June 26th issue of Science (Alberts et al., 2015)

I'd like to highlight two paragraphs of that report.
Like all human endeavors, science is imperfect. However, as Robert Merton noted more than half a century ago "the activities of scientists are subject to rigorous policing, to a degree perhaps unparalleled in any other field of activity." As a result, as Popper argued, "science is one of the very few human activities—perhaps the only one—in which errors are systematically criticized and fairly often, in time, corrected." Instances in which scientists detect and address flaws in work constitute evidence of success, not failure, because they demonstrate the underlying protective mechanisms of science at work.
All scientists know this, but some of us still get upset when other scientists correct our mistakes. We have learned to deal with such criticism—and dish it out ourselves—because we know that's how knowledge advances. Our standards are high.