More Recent Comments

Showing posts with label Evolutionary Biology. Show all posts
Showing posts with label Evolutionary Biology. Show all posts

Thursday, April 20, 2017

The last molecular evolution exam: Question #2

The paper by Andrews et al. (2011) lists a number of common misconceptions held by their students. One of them is the idea that, “Evolution is a process that will never stop, even in the human species.” Why do they think this is a misconception? Do you agree?

Andrews, T.M., Kalinowski, S.T., and Leonard, M.J. (2011). “Are humans evolving?” A classroom discussion to change student misconceptions regarding natural selection. Evolution: Education and Outreach, 4:456-466. [doi: 10.1007/s12052-011-0343-4]
Question #1, Question #2, Question #3, Question #4, Question #5, Question #6


The last molecular evolution exam: Question #1

Eugene Koonin described his view of the proper null hypothesis for evolutionary questions. One of the examples he used concerns the evolution of recent gene duplications (Koonin, 2016 p.5). Describe how one possible fate of these genes relates to constructive neutral evolution. What are the other possible fates of these genes? Which one is most likely?

Koonin, E.V. (2016) Splendor and misery of adaptation, or the importance of neutral null for understanding evolution. BMC biology, 14:114 [doi: 10.1186/s12915-016-0338-2]

... in eukaryotes, duplicates of individual genes cannot be effectively eliminated by selection and thus often persist and diverge. The typical result is subfunctionalization, whereby the gene duplicates undergo differential mutational deterioration, losing subsets of ancestral functions. As a result, the evolving organisms become locked into maintaining the pair of paralogs. Subfunctionalization underlies a more general phenomenon, denoted constructive neutral evolution (CNE).

Question #1, Question #2, Question #3, Question #4, Question #5, Question #6


Monday, March 27, 2017

How to define evolution?

Do you think this video is helpful? [see "What Is Evolution?"] Is it important to know that evolution requires genetic changes and that it's populations that evolve? Is it important to have a definition of evolution that covers antibiotic resistance in bacteria and blood types in humans?




Monday, March 20, 2017

Correcting the correction of a video about evolution

Charlie McDonnell is the author of a book called Fun Science: A Guide To Life, The Universe And Why Science Is So Awesome. He made a video on misconceptions about the theory of evolution (see below). Sally Le Page (below left) is an evolutionary biologist working on her Ph.D. at Oxford (UK). She noticed a few problems with the McDonnell video so she made one of her own to correct the misconception in the first video. Now it's my turn to correct the misconception in the video that corrects the first video!

Sally Le Page highlights six misconceptions in the McDonnell video. She points out that none of them are very important—they are "little niggles"—but she still thinks a comment is necessary. (I agree.)

Saturday, February 25, 2017

Another physicist teaches us about evolution

Michio Kaku is a theoretical physicist at the City College of New York. Like many physicists, he thinks he's smart enough to know everything about everything so he doesn't hesitate to lecture people about evolution.

In this case. He's telling us that humans have reached perfection in all adaptive traits so there can't be any more selection for things like bigger brains. He tells us that human evolution has stopped because no animals are chasing us in the forest any more. He also let's us know that there are no more isolated populations because of jet planes. Watch the video to see how little he understands.



Is there something peculiar about physicists? Does anyone know of any biologists who make YouTube videos about quantum mechanics or black holes? If not, is that because biologists are too stupid ... or too smart?


Monday, February 13, 2017

Dan Graur explains junk DNA

If you want to be a serious participant in the debate over junk DNA then you should watch this video. Dan Graur presents the standard arguments for junk DNA—most of which have been around for decades. He also destroys the main arguments against junk DNA. You are entitled to choose sides in this debate but you are not entitled to pose as an authority unless you know the best arguments from BOTH sides. It is not sufficient to just quote evidence for function as support for your bias. You must also refute the evidence for junk. You have to show why it is wrong or misleading.





Hat Tip: PZ Myers

Sunday, February 12, 2017

Darwin Day 2017

Today is Darwin Day but I'm too busy with other things to write a new post in his honor. So here's a post from 2007 (slightly updated) to help you enjoy the day.




Today is the birthday of the greatest scientist who ever lived. When you visit Darwin's home (Down House) you get a sense of what he must have been like. One of the things that's obvious is the number of bedrooms for the children. The house must have been alive with the activities of young children. It's no wonder that Darwin needed some peace and quiet from time to time.

Gwen Raverat was Darwin's granddaughter (daughter of George Darwin). She described Down House as she knew it in the years shortly after Darwin died.
Of all places at Down, the Sandwalk seemed most to belong to my grandfather. It was a path running round a little wood which he had planted himself; and it always seemed to be a very long way from the house. You went right to the furthest end of the kitchen garden, and then through a wooden door in the high hedge, which quite cut you off from human society. Here a fenced path ran along between two great lonely meadows, till you came to the wood. The path ran straight down the outside of the wood--the Light Side--till it came to a summer-house at the far end; it was very lonely there; to this day you cannot see a single building anywhere, only woods and valleys.
I became interested in Darwin's children about fifteen years ago when I first began to appreciate the influence they had on his life. We all know the story of Annie's death when she was ten years old and how this led to Darwin's rejection of religion. There were other tragedies but Charles and Emma turned out to be very good parents.

Here's a short biography of each of Darwin's children from AboutDarwin.com
William Erasmus Darwin
The first of Darwin's children was born on December 27, 1839. He was a graduate of Christ’s College at Cambridge University, and was a banker in Southampton. He married Sara Ashburner from New York, but they had no children. William died in 1914.

Anne Elizabeth Darwin
Born on March 2 1841, and died at the age of ten of tuberculosis on April 22, 1851. It was the death of Annie that radically altered Darwin’s belief in Christianity.

Mary Eleanor Darwin
Born on September 23, 1842 but died a few weeks later on October 16th.

Henrietta Emma Darwin ("Etty")
Born on September 25, 1843 and married Richard Buckley Litchfield in August of 1871. She lived 86 years and edited Emma's (her mother) personal letters and had them published in 1904. She had no children.

George Howard Darwin
Born on July 9, 1845. He was an astronomer and mathematician, and became a Fellow of the Royal Society ... in 1879. In 1883 he became the Plumian Professor of Astronomy and Experimental Philosophy at Cambridge University, and was a Barrister-at-Law. He studied the evolution and origins of the solar system. George married Martha (Maud) du Puy from Philadelphia. They had two sons, and two daughters. He died in 1912.

Elizabeth Darwin
Born on July 8, 1847 and died in 1926. She never married and had no children.

Francis Darwin
Born on August 16, 1848. He became a botanist specializing in plant physiology. He helped his father with his experiments on plants and was of great influence in Darwin's writing of "The Power of Movement in Plants" (1880). He was made a Fellow of the Royal Society in 1879, and taught at Cambridge University from 1884, as a Professor of Botany, until 1904. He edited many of Darwin's correspondence and published "Life and Letters of Charles Darwin" in 1887, and "More Letters of Charles Darwin" in 1903. He also edited and published Darwin’s Autobiography. He married Amy Ruck but she died when their first child, Bernard, was born in September of 1876. He then married Ellen Crofts in September of 1883, and they had one daughter, Frances in 1886. Francis was knighted in 1913, and died in 1925.

Leonard Darwin
Born on January 15, 1850. He became a soldier in the Royal Engineers in 1871, and was a Major from 1890 onwards. He taught at the School of Military Engineering at Chatham from 1877 to 1882, and served in the Ministry of War, Intelligence Division, from 1885-90. He later became a liberal-unionist MP for the town of Lichfield in Staffordshire 1892-95, and was president of the Royal Geological Society 1908-11. Leonard married Elizabeth Fraser in July of 1882. He married a second time, but had no children and died in 1943.

Horace Darwin
Born on May 13, 1851. He was a graduate of Trinity College, Cambridge, and became an engineer and a builder of scientific instruments. In 1885 he founded the Cambridge Scientific Instrument Company. He was the Mayor of Cambridge from 1896-97, and was made a Fellow of the Royal Society in 1903. Horace married Emma Farrer in January of 1880 and they had three children. He died in 1928.

Charles Waring Darwin
Born on December 6, 1856 but died on June 28 1858.



This is something I wrote about my visit to Westminster Abby 17 years ago.

Eventually we wind around the Monastery and finally enter the Nave. Ignoring the monument to Winston Churchill (1874-1965) and hardly bothering to look up and admire the high ceiling, I head for the front of the church where I can see the statue of Isaac Newton (1643-1727). This is the same statue that plays such an important role in the Da Vinci Code but today I’m not interested in Newton or his orb. I takes me only a few seconds to find the marked stone on the floor. I’m standing on the grave of Charles Robert Darwin.

I can picture the scene on Wednesday, April 26, 1882—a grand funeral attended by all of London’s high society and the leading intellectuals of the most powerful nation in the world. Darwin would not have been pleased. He wanted to be buried quietly in the Downe cemetery with his brother Erasmus and two of his children. Darwin's family was persuaded by his friends Galton, Hooker, Huxley and the President of the Royal Society, William Spottiswoode, that, for the sake of England, Darwin should be laid to rest in Westminster Abbey. As Janet Browne writes in her biography of Charles Darwin, "Dying was the most political thing Darwin could have done."

Looking around I can see the tomb of Joseph Hooker and a memorial to Alfred Wallace, two of the scientists who were Darwin’s pallbearers. (Another pallbearer, Thomas Henry Huxley, is buried elsewhere.) Nearby are the final resting places of a host of famous scientists; Kelvin, Joule, Clerk-Maxwell, Faraday, Herschell, and Sir Charles Lyell. Lyell was Darwin’s hero and mentor. We are told that Darwin’s wife Emma wished he were buried closer to Lyell.

I am not overly sentimental but this visit has a powerful effect. I think Charles Darwin is the greatest scientist who ever lived—yes, even greater than Sir Isaac Newton whose huge statue overshadows Darwin’s humble marker in the floor. Natural selection is one of the greatest scientific ideas of all time. Darwin discovered it and he deserves most of the credit. But Charles Darwin died on April 19 in 1882 and that was a long time ago.



Friday, February 03, 2017

Why is life the way it is?

Nick Lane is very good at explaining complex biology and biochemistry. He is the winner of the Royal Society's Michael Faraday Prize for 2016. Here's his lecture. It's worth watching if you want to understand the latest informed (naturalistic) speculations on the origin of life.




Sunday, January 29, 2017

The evolution of the citric acid cycle

I just realized that I don't have a post devoted to the evolution of the citric acid cycle. This need to be remedied since I often talk about it. It's a good example of how an apparently irreducibly complex pathway can arise by evolution. It's also a good example to get students to think outside of the box. Undergraduate biochemistry courses usually concentrate on human physiology and too often students transfer that bias to all other species. They assume that what happens in humans is what happens in plants, fungi, protozoa, and bacteria.1

Here's what the standard citric acid cycle looks like (Moran et al., 2011 p. 393).

Sunday, January 15, 2017

Why are most biologists adaptationists?

I enjoyed listening to Michael Lynch's talk on Friday. Much of what he said has been covered in Sandwalk over the past few years. His main point was that nothing in biology makes sense except in the light of population genetics. He laments the fact that most biologists, and even most evolutionary biologists, don't have a firm grasp of population genetics and the importance of random genetic drift.

I asked him why he thought this was true. He said he didn't know why. I think he was being polite. If you read his book, "The Origins of Genome Architecture," you'll see that he attributes this phenomeon to ignorance of modern evolutionary theory.

Friday, January 06, 2017

Genetic variation in the human population

With a current population size of over 7 billion, the human population should contain a huge amount of genetic variation. Most of it resides in junk DNA so it's of little consequence. We would like to know more about the amount of variation in functional regions of the genome because it tells us something about population genetics and evolutionary theory.

A recent paper in Nature (Aug. 2016) looked at a large dataset of 60,706 individuals. They sequenced the protein-coding regions of all these people to see what kind of variation existed (Lek et al., 2016) (ExAC). The group included representatives from all parts of the world although it was heavily weighted toward Europeans. The authors used a procedure called "principal component analysis" (PCA) to cluster the individuals according to their genetic characteristics. The analysis led to the typical clustering by "population clusters." (That term is used to avoid the words "race" and/or "subspecies.")


Thursday, January 05, 2017

Birth and death of genes in a hybrid frog genome

De novo genes1 are quite rare but genome duplications are quite common. Sometimes the duplicated regions contain genes so the new genome contains two copies of a gene that was formerly present in only one copy. "Common" in this sense means on a scale of millions of years. Michael Lynch and his colleague have calculated that the rate of fixed gene duplication is about 0.01 per gene per million years (Lynch and Conery, 2003 a,b; Lynch 2007). Since a typical vertebrate has more than 20,000 genes, this means that 200 genes will be duplicated and fixed every million years.


The initial duplication event is likely to be deleterious since there will now be redundant DNA in the genome. The slightly deleterious allele (duplication) can be purged by negative selection in species with large population sizes (e.g. bacteria). But in species with smaller populations, natural selection is not powerful enough to eliminate slightly deleterious alleles so the duplication persists and may become fixed in the population.

Wednesday, January 04, 2017

Do seahorses evolve faster?

Genome sequencing is becoming so routine that it's difficult to publish your new genome sequence in a top journal. The trick is to find something unique and exciting about your genome so you can attract the attention of the leading journals. The latest success is the seahorse genome published in the Dec. 15, 2016 issue of Nature (Lin et al., 2016.

The species is the tiger tail seahorse Hippocampus comes. The assembled genome is 502Mb or about 1/6th the size of the human genome. The seahorse has 23,458 genes (protein-coding?) or about the same number as most other vertebrates. About 25% of the genome is junk (transposon-related).1

Tuesday, January 03, 2017

Save the date!!! Michael Lynch is coming to Toronto

Michael Lynch is giving a seminar next week on Friday, January 13, 2017 in the Dept. of Ecology and Evolutionary Biology at the University of Toronto. The title is: Mutation, Drift, and the Origin of Subcellular Features. The talk is at 3PM in the Earth Sciences Centre rm B142.



Monday, January 02, 2017

You MUST read this paper if you are interested in evolution

A reader alerted me to a paper that was just published in BMC Biology.1 The author is Eugene Koonin. He makes the case for neutral evolution (random genetic drift) and against adaptationism. You may not agree with his take on evolutionary theory but you better be aware of it if you claim to be knowledgeable about evolution.

Koonin, E.V. (2016) Splendor and misery of adaptation, or the importance of neutral null for understanding evolution. BMC biology, 14:114. [doi: 10.1186/s12915-016-0338-2]
The study of any biological features, including genomic sequences, typically revolves around the question: what is this for? However, population genetic theory, combined with the data of comparative genomics, clearly indicates that such a “pan-adaptationist” approach is a fallacy. The proper question is: how has this sequence evolved? And the proper null hypothesis posits that it is a result of neutral evolution: that is, it survives by sheer chance provided that it is not deleterious enough to be efficiently purged by purifying selection. To claim adaptation, the neutral null has to be falsified. The adaptationist fallacy can be costly, inducing biologists to relentlessly seek function where there is none.

Sunday, January 01, 2017

The most popular Sandwalk post of 2016

My most popular post last year was: An Intelligent Design Creationist disputes the evolution of citrate utilization in the LTEE ... Lenski responds. It had almost 20,000 views and 227 comments.

The article discussed a paper by Intelligent Design Creationist Scott Minnich who criticized Richard Lenski's ongoing evolution experiment on the grounds that no new information had been created in the evolution of ability to use citrate.

Tuesday, December 20, 2016

Is the high frequency of blood type O in native Americans due to random genetic drift?

The frequency of blood type O is very high in some populations of native Americans. In many North American tribes, for example, the frequency is over 90% and often approaches 100%. A majority of individuals in those populations have blood type O (homozygous for the O allele). [see Theme: ABO Blood Types]

Since there's no solid evidence that blood types are adaptive,1 the standard explanation is random genetic drift.

Jerry Coyne explains it in Why Evolution Is True.
One example of evolution by drift may be the unusual frequencies of blood types (as in the ABO system) in the Old Order Amish and Dunker religious communities in America. These are small, isolated, religious groups whose members intermarry—just the right circumstances for rapid evolution by genetic drift.

Accidents of sampling can also happen when a population is founded by just a few immigrants, as occurs when individuals colonize an island or a new area. The almost complete absence of genes producing the B blood type in Native American populations, for example, may reflect the loss of this gene in a small population of humans that colonized North America from Asia around twelve thousand years ago.

Wednesday, December 14, 2016

The ENCODE publicity campaign of 2007

ENCODE1 published the results of a pilot project in 2007 (Birney et al., 2007). They looked at 1% (30Mb) of the genome with a view to establishing their techniques and dealing with large amounts of data from many different groups. The goal was to "provide a more biologically informative representation of the human genome by using high-throughput methods to identify and catalogue the functional elements encoded."

The most striking result of this preliminary study was the confirmation of pervasive transcription. Here's what the ENCODE Consortium leaders said in the abstract,
Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap with one another.
ENCODE concluded that 93% of the genome is transcribed in one tissue or another. There are two possible explanations that account for pervasive transcription.

Tuesday, December 13, 2016

The proteome complexity myth

A reader pointed me to the ThermoFisher Scientific website. ThermoFisher Scientific is a major supply of scientific equipment and supplies. They created their life sciences wesite to help inform their customers and sell more products. The page I'm interested in is: Overview of Post-Translational Modifications (PTMs). It begins with,

Within the last few decades, scientists have discovered that the human proteome is vastly more complex than the human genome. While it is estimated that the human genome comprises between 20,000 and 25,000 genes (1), the total number of proteins in the human proteome is estimated at over 1 million (2). These estimations demonstrate that single genes encode multiple proteins. Genomic recombination, transcription initiation at alternative promoters, differential transcription termination, and alternative splicing of the transcript are mechanisms that generate different mRNA transcripts from a single gene (3).

The increase in complexity from the level of the genome to the proteome is further facilitated by protein post-translational modifications (PTMs). PTMs are chemical modifications that play a key role in functional proteomics, because they regulate activity, localization and interaction with other cellular molecules such as proteins, nucleic acids, lipids, and cofactors.

Saturday, December 10, 2016

Revisiting Michael Behe's challenge and revealing a closed mind

It's been twenty years since Michael Behe published Darwin's Black Box and Intelligent Design Creationists are flagellating themselves over the fact that it had so little impact on creationism. The USA is becoming more secular with each passing year. Religion is on the decline.

In their attempt to deal with their defeat, the main ID blog has been publishing "Behe's Greatest Hits," which is a euphemistic way of saying "Behe's Greatest Failures." The latest one caught my eye. It's Best of Behe: An Open Letter to Professors Kenneth Miller and PZ Myers.

It takes you back more than two years to July 21, 2014. That's when Michael Behe issued his challenge to PZ Myers and Ken Miller. The challenge was based on his book The Edge of Evolution and specifically on the development of chloroquine resistance in Plasmodium falciparum. Behe starts with the assumption that cloroquine resistance is extremely rare—it occurs with a probability of roughly 10-20. He concludes that resistance requires at least two different mutations that must occur simultaneously in an individual suffering from malaria while being treated with chloroquine.

The first assumption is approximately correct. Chloroquine resistance is rare. He was criticized for the second assumption; namely, that the overall probability of chloroquine resistance is just the probability of two mutations occurring simultaneously (e.g. 10-10 × 10-10 = 10-20).