It's difficult to know how many protein-coding genes there are in the human genome because there are several different ways of counting and the counts depend on what criteria are used to identify a gene. Last year I commented on a review by Abascal et al. (2018) that concluded there were somewhere between 19,000 and 20,000 protein-coding genes. Those authors discussed the problems with annotation and pointed out that the major databases don't agree on the number of gene [How many protein-coding genes in the human genome?].
More Recent Comments
Tuesday, September 24, 2019
Wednesday, September 11, 2019
Gerald Fink promotes a new definition of a gene
This is the 2019 Killian lecture at MIT, delivered in April 2019 by Gerald Fink. Fink is an eminent scientist who has done excellent work on the molecular biology of yeast. He was director of the prestigious Whitehead Institute at MIT from 1990-2001. With those credentials you would expect to watch a well-informed presentation of the latest discoveries in molecular genetics. Wouldn't you?
Sunday, September 08, 2019
Contingency, selection, and the long-term evolution experiment
I'm a big fan of Richard Lenski's long-term evolution experiment (LTEE) and of Zachary Blount's work in particular. [Strolling around slopes and valleys in the adaptive landscape] [On the unpredictability of evolution and potentiation in Lenski's long-term evolution experiment] [Lenski's long-term evolution experiment: the evolution of bacteria that can use citrate as a carbon source]
The results of the LTEE raise some interesting questions about evolution. The Lenski experiment began with 12 (almost) identical cultures and these have now "evolved" for 31 years and more than 65,000 generations. All of the cultures have diverged to some extent and one of them (and only one) has developed the ability to use citrate as a carbon source. Many of the cultures exhibit identical, or very similar, mutations that have reached significant frequencies, or even fixation, in the cultures.Several other laboratory evolution experiments have been completed or are underway in various labs around the world. The overall results are relevant to a discussion about the role of contingency and accident in the history of life [see Evolution by Accident]. Is it true that if you replay the tape of life the results will be quite different? [Replaying life's tape].