Wednesday, January 28, 2015

Vision and Change

A few years ago the AAAS (American Association for the Advancement of Science) sponsored a study of undergraduate education in the biological sciences. The study groups published a report in 2011 called Vision and Change in Undergraduate Biology Education: A Call to Action. Since then a number of disciplines, including biochemistry and molecular biology, have been trying to encourage university teachers to implement these proposals. So far, the "call to action" has pretty much fallen on deaf ears. Most professors are reluctant to admit that their teaching needs improvement and they are reluctant to read this report or any other part of the pedagogical literature.

“Scientists should be no more willing to fly blind in their teaching than they are in scientific research, where no new investigation is begun without an extensive examination of what is already known.”

Bruce Alberts, NRC, 1997
What could be wrong with this?
The time has come for all biology faculty, particularly those who teach undergraduates, to develop a coordinated and sustainable plan for implementing sound principles of teaching and learning to improve the quality of undergraduate biology education nationwide. The stakes are too high for all biologists not to get involved with this national call for change.
The main recommendations are that we should concentrate on teaching fundamental concepts and principles and not facts and that we should adopt a student-centered form of learning.
The recommendations discussed in this report include the following action items aimed at ensuring that the vision of the conference becomes an agenda for change:

1. integrate Core Concepts and Competencies throughout the Curriculum
  • Introduce the scientific process to students early, and integrate it into all undergraduate biology courses.
  • Define learning goals so that they focus on teaching students the core concepts, and align assessments so that they assess the students’ understanding of these concepts.
  • Relate abstract concepts in biology to real-world examples on a regular basis, and make biology content relevant by presenting problems in a real-life context.
  • Develop lifelong science-learning competencies.
  • Introduce fewer concepts, but present them in greater depth. Less really is more.
  • Stimulate the curiosity students have for learning about the natural world.
  • Demonstrate both the passion scientists have for their discipline and their delight in sharing their understanding of the world with students.
2. Focus on student-Centered Learning
  • Engage students as active participants, not passive recipients, in all undergraduate biology
    courses.
  • Use multiple modes of instruction in addition to the traditional lecture.
  • Ensure that undergraduate biology courses are active, outcome oriented, inquiry driven, and relevant.
  • Facilitate student learning within a cooperative context.
  • Introduce research experiences as an integral component of biology education for all students, regardless of their major.
  • Integrate multiple forms of assessment to track student learning.
  • Give students ongoing, frequent, and multiple forms of feedback on their progress.
  • View the assessment of course success as similar to scientific research, centered on the students involved, and apply the assessment data to improve and enhance the learning environment.
"Appreciating the scientific process can be even more important than knowing scientific facts. People often encounter claims that something is scientifically known. If they understand how science generates and assesses evidence bearing on these claims, they possess analytical methods and critical thinking skills that are relevant to a wide variety of facts and concepts and can be used in a wide variety of contexts.”

National Science Foundation, Science and Technology Indicators, 2008
The evidence is in. Whether or not we should change is a no-brainer.

The other two recommendations have to do with implementation .... this is the tough part.
3. Promote a Campuswide Commitment to Change

4. Engage the Biology Community in the implementation of Change
Notice that MOOCs and online learning are not prominent objectives in Visions and Change. You have to wonder why AAAS isn't inviting the members of these study groups to give plenary lectures at their 2015 meeting instead of the President of Coursera [see President of Coursera to give plenary lecture at AAAS meeting]. Maybe they've changed their minds since 2011?


2 comments:

  1. "The main recommendations are that we should concentrate on teaching fundamental concepts and principles and not facts and that we should adopt a student-centered form of learning."
    Yup, smells like Darwinism to me...

    ReplyDelete
    Replies
    1. No, it smells like learning how science works instead of just being able to recite a collection of facts as if reading from a lexicon. Today any idiot can just look up the facts on their phone or computer, but learning how those facts were arrived at in the first place is much more important.

      Delete