More Recent Comments

Monday, June 15, 2015

Thursday, June 15, 1815

It was 200 years ago today that Napoleon's army crossed the Belgian border at Charleroi and advanced on Quatre-Bras in order to split the Prussian and British armies. By occupying the central position, Napoleon hoped to defeat each army separately and occupy Brussels and the channel ports.

Neither Blücher nor Wellington were expecting such a rapid advance so Napoleon gained the element of surprise in the opening days of the campaign [Battle of Waterloo].

The Prussian outposts were quickly overrun and the army was ordered to assemble at Ligny. Napoleon's right, under Marshal Grouchy, pursued the retreating Prussians while the left, under Marshal Ney, marched on Quatre Bras in order to prevent the British army from uniting with the Prussians.


Debunking misinformation

This is an excellent summary of how to correct scientific misinformation [Busting myths: a practical guide to countering science denial].

It's particularly important to note that just presenting correct scientific facts isn't enough to correct myths and misinformation. You need to discuss the misinformation and show why it is wrong. This method is supported by numerous studies.

What it means is that if you want to correct misinformation about evolution, you have to address the false beliefs of your audience. You can't correct the beliefs of evolution deniers without bringing up the various forms of creationism and showing why they are wrong. In other words, teach the controversy.

Some of my American friends tell me that this is legally impossible in American schools. If they are right, then creationism wins. Ironically, by using the courts to keep all mention of creationism out of the public schools, these friends are playing right into the hands of the anti-evolution crowd and making it impossible to debunk their myths and misconceptions.



Saturday, June 13, 2015

Café Scientifique: Replaying the tape of life

Come and join the Halton-Peel Humanist Community at Café Scientifique on June 21st. I'll be talking about Replaying the Tape of Life: "Are Humans Inevitable".

The meeting is on Sunday evening at 7:00 pm at The Franklin House, 263 Queen St. in Sreetsville. This is a relatively new Café Scientifique so new people are more than welcome. The talk is very informal (no slides or powerpoint) and there will be lots of time for discussion and debate. I'm told that various "refreshments" will be available to help make the evening more enjoyable.

(from Evolution by Accident)

Stephen Jay Gould wrote a book about the role of chance in evolution. He called it "Wonderful Life." On the surface it's a book about the Burgess Shale and the Cambrian explosion but there's a powerful message as well. Gould is interested in why some species survive while others go extinct. Are the survivors better adapted than the losers of is it a matter of luck? We could answer this question if we could carry out an experiment.
I call this experiment "replaying life's tape." You press the rewind button and, making sure you thoroughly erase everything that actually happens, go back to any time and place in the past—say, to the seas of the Burgess Shale. Then let the tape run again and see if the repetition looks at all like the original. If each replay strongly resembles life's actual pathway, then we must conclude that what really happened pretty much had to occur. But suppose that the experimental versions all yield sensible results strikingly different from the actual history of life? What could we then say about the predictability of self-conscious intelligence? or of mammals? or of vertebrates? or of life on land? or simply of multicellular persistence for 600 million years?
Stephen Jay Gould (1989) pp. 48-50


Friday, June 12, 2015

Rain on the Darwin sunshine

Here's a YouTube video of a talk by Michael Lynch from February 2015. He was talking at Darwin Week at the National Institute for Mathematical and Biological Synthesis at the University of Tennessee (USA).

The talk begins with a warning that evolution has gone beyond Darwinism. Lynch emphasizes, "Mutation, drift, and the origin of subcellular features." If you haven't been able to follow the discussion on the perils of adaptationism, then watch this lecture to get a sense of what it's all about.

I'm a big fan of Michael Lynch and I hope you will also be a fan after you learn more about his views.




Thursday, June 11, 2015

Biochemists can be astronauts!

The latest issue of ASBMS Today has an article about the American astronaut Paggy Whitson [see A lab with a view].

Peggy Whitson is a biochemist. She did her Ph.D. with Kathleen Mathews at Rice University in Houston, Texas, USA. I frequently refer to her work on the lac repressor and its interaction with lac operator sequences [see Repression of the lac Operon]. Here are some of her papers. Once you understand this stuff, you are in a better position to judge the ENCODE results and the role of spurious binding sites.

Hsieh, W.T., Whitson, P.A., Matthews, K.S., and Wells, R.D. (1987) Influence of sequence and distance between two operators on interaction with the lac repressor. Journal of Biological Chemistry, 262: 14583-14591.
The influence of additional operator or pseudooperator sequences on the lactose repressor-operator interaction has been investigated. Results of kinetic and equilibrium binding measurements suggest an important in vivo role for the Z-gene pseudooperator in repressor-operator binding; the formation of a ternary, looped complex is indicated by the influence of secondary operator sites on binding parameters. Although the binding affinity of the Z-gene pseudooperator [Oz] is only approximately 1/30 that observed for the primary operator [O], the binding affinity to DNA containing both Oz and O is significantly higher than either sequence alone or the sum of the two. This synergistic effect is enhanced further by replacing the pseudooperator sequence [Oz] with the primary operator sequence and results in an even stronger ternary complex in plasmids with duplicate primary sites. The distance between the center of the two primary operators affects the formation of a ternary complex in the linear DNA molecules. Decreased dissociation rate constants were observed with spacing of operator-like sequences between 300 and 500 base pairs (bp). Minimal influence of the second operator on repressor binding is observed when the operators are separated by approximately 4000 or approximately 100 bp. The significant influence of distance on kinetic and equilibrium parameters was demonstrated by measurements on plasmid pRW1511 [Oi-O-PL-Oz] cleaved with restriction enzymes either in the polylinker region to place Oi-O and Oz on opposite ends of the linear plasmid or outside this region to maintain the sites within 500 bp. These results are consistent with the formation of operator-repressor-pseudooperator ternary complex to generate a looped DNA structure.

Whitson, P.A., Hsieh, W.T., Wells, R.D., and Matthews, K.S. (1987) Supercoiling facilitates lac operator-repressor-pseudooperator interactions. Journal of Biological Chemistry, 262:4943-4946.
The binding affinity of the Escherichia coli lactose repressor to operator-containing plasmids was increased by negative supercoiling of the DNA. The increased affinities observed were dependent on the sequence context of the DNA as well as the degree of supercoiling. Dissociation rate constants for plasmids containing a single operator site decreased as a function of the negative supercoil density. However, the presence of pseudooperators in the plasmid DNA in addition to the primary operator sequence resulted in a significant decrease in the operator-plasmid dissociation rate at higher negative supercoil densities. Approximately eight ionic interactions were determined for both the supercoiled plasmids and the linear DNAs examined. These results suggest that the stabilization provided by the topology of supercoiled DNA affects the nonionic component of the protein-DNA interaction. The ability to form a ternary complex of protein with two DNA segments is increased by the presence of multiple operator-like sites on the DNA. Furthermore, supercoiling DNA with multiple operator-like sequences profoundly diminishes the dissociation rate and results in a remarkably stable ternary, presumably looped complex (t1/2 approximately 28 h). These data suggest a critical role in vivo for DNA topology and pseudooperator(s) in transcriptional regulation of the lac operon.

Whitson, P.A., Hsieh, W.T., Wells, R.D., and Matthews, K.S. (1987) Influence of supercoiling and sequence context on operator DNA binding with lac repressor. Journal of Biological Chemistry, 262(30), 14592-14599.
The dissociation of the repressor-operator complex from a series of negatively supercoiled plasmid DNAs was examined as a function of the sequence context, orientation, and spacing. The plasmids were grouped into four classes, each with common sequence context. The highest dissociation rate constants were observed for the plasmids containing only a single operator (or pseudooperator) sequence, while approximately 10-fold lower rate constants were measured for plasmids with the I gene pseudooperator in conjunction with either the Z gene pseudooperator or the primary operator. Comparison of the behavior of these two classes of plasmids demonstrated the importance of two operator sequences and supported a model of DNA loop formation to stabilize the repressor-operator complex (Whitson, P. A., and Matthews, K. S. (1986) Biochemistry 25, 3845-3852; Whitson, P. A., Olson, J. S., and Matthews, K. S. (1986) Biochemistry 25, 3852-3858; Whitson, P. A., Hsieh, W. T., Wells, R. D., and Matthews, K. S. (1987) J. Biol. Chem. 262, 4943-4946; Krämer, H., Niemöller, M., Amouyal, M., Revet, B., von Wilcken-Bergmann, B., and Müller-Hill, B. (1987) EMBO J. 6, 1481-1491). The third class, with intermediate dissociation rate constants, was comprised of plasmids which contained the primary operator and the higher affinity pseudooperator normally located in the Z gene. Neither the additional presence of the I gene pseudooperator nor the orientation of the primary operator relative to the Z gene pseudooperator significantly affected the dissociation rate constants. The binding characteristics of this group of plasmids demonstrated the essential role of the Z gene pseudooperator in the formation of intramolecular ternary complex and suggested an in vivo function for this pseudooperator. Plasmids containing two primary operator sequences were the class with lowest dissociation rate constants from lac repressor, and minimal effects of salt or spacing on dissociation of this class were observed. These data are consistent with formation of an intramolecular complex with a looped DNA segment stabilized by the combination of increased local concentration of binding sites and torsional stresses on the DNA which favor binding in supercoiled DNA.

Whitson, P.A., and Matthews, K.S. (1986) Dissociation of the lactose repressor-operator DNA complex: Effects of size and sequence context of operator-containing DNA. Biochemistry, 25:3845-3852.
The dissociation kinetics for repressor-32P-labeled operator DNA have been examined by adding unlabeled operator DNA to trap released repressor or by adding a small volume of concentrated salt solution to shift the Kd of repressor-operator interaction. The dissociation rate constant for pLA 322-8, an operator-containing derivative of pBR 322, was 2.4 × 10-3 s-1 in 0.15 M KCl. The dissociation rate constant at 0.15 M KC1 for both Xplac and pIQ, each of which contain two pseudooperator sequences, was ~6 × l0-4 s-1. Elimination of Elimination flanking nonspecific DNA sequences by use of a 40 base pair operator-containing DNA fragment yielded a dissociation rate constant of 9.3 × 10-3 s-l. The size and salt dependences of the rate constants suggest that dissociation occurs as a multistep process. The data for all the DNAs examined are consistent with a sliding mechanism of facilitated diffusion to/from the operator site. The ability to form a ternary complex of two operators per repressor, determined by stoichiometry measurements, and the diminished dissociation rates in the presence of intramolecular nonspecific and pseudooperator DNA sites suggest the formation of an intramolecular ternary complex. The salt dependence of the dissociation rate constant for pLA 322-8 at high salt concentrations converges with that for a 40 base pair operator. The similarity in dissociation rate constants for pLA 322-8 and a 40 base pair operator fragment under these conditions indicates a common dissociation mechanism from a primary operator site on the repressor.


Saturday, June 06, 2015

Who's an authority on evolutionary theory?

There's an interesting discussion going on at Uncommon Descent. Barry Arrington is wondering who to believe when it comes to evolutionary theory and many of the ID regulars have chimed in [Authority in evolutionary theory]. Clearly, this is an important issue for them because they don't want to be accused of not understanding evolution. They want to protect their version of Darwinism.

They seemed to have reached a consensus. They say you can't be an authority on evolutionary theory unless you have published a scientific paper on the subject in the last decade or so. What this means is that they can dismiss the views of many evolution supporters because we don't meet the minimum qualification.1 Our view on what is, and isn't, proper evolutionary theory are just personal opinions so they don't count.

Unfortunately for them, this also eliminates Barry Arrington, Vincent Torley, Denyse O'Leary, Casey Luskin, Stephen Meyer, Jonathan Wells, Jonathan McLatchie, Michael Behe, Salvador Cordova, Jonathan Bartlet, Michael Egnor, Cornelius Hunter, Gordon Elliot Mullings, Ann Gauger and just about everyone else in the Intelligent Design Creationist camp. If they stick to their guns, it means that nothing posted on the ID blogs is anything more than a personal opinion by someone who is not an authority on evolutionary theory.

So, who are they going to believe now? My first thought is that this can only be good for the evolution side since people who publish scientific articles on evolutionary theory are not ID supporters. It means that the Intelligent Design Creationists are obligated to trust many prominent evolution biologists as authorities while dismissing most of their own crowd.

I don't think that's what they have in mind. What they have in mind is that people like Jim Shapiro and other critics of modern evolutionary theory are the real authorities because they have published in the scientific literature. I suppose it's part of a strategy to maintain the illusion that "Darwinism" is deeply flawed.

The one good thing that will come out of this discussion, I'm sure, is that the number of posts and comments on their blogs will be greatly reduced since the general consensus is that none of them are authorities on the subject of evolution. Lot's of people are going to have to shut up because they haven't published anything on evolutionary theory.2

Strange, but I will miss Barry Arrington and Denyse O'Leary's attacks on evolutionary theory. They will now be criticized by their own people as non-authorities whenever they post.


1. I have never published a paper in the scientific literature on evolutionary theory.

2. No, I'm not holding my breath.

Friday, June 05, 2015

Dinner at Vij's in Vancouver

Everybody loves Vij's. We were lucky. We arrived late at 5:20 for the first sitting when the restaurant opens at 5:30. The lineup was not as big as I've seen in the past and we were able to get seated when Vij opened up.

Left to right; Gordon Moran, Me, Chris Hogue, Jerry Coyne.



We talked about computer games. travel, India, Singapore, food, science, books, religion, evolution, politics, and solved most of the problems of the world. (Beer helps.) The food was delicious. Check out the entire meal, with photos, on Jerry's blog: Noms: Vij’s Indian restaurant in Vancouver.


Wednesday, May 27, 2015

The "Insulation Theory of Junk DNA"

My copy of Junk DNA by Nessa Carey has arrived and I'm working my way through it. It really is as bad as we imagined.

Here's an example (pp. 34-36). She describes a situation where an angry baboon might smash an expensive watch. If you hide the watch in large rolls of insulation, the baboon is less likely to cause damage.
And the insulation theory of junk DNA was built on the same premise. The genes that code for proteins are incredibly important. They have been subjected to high levels of evolutionary pressure, so that in any given organism, the individual protein sequence is as good as it's likely to get. A mutation in DNA—a change in a base pair—that changes the protein sequence is unlikely to make a protein more effective. It's more likely that a mutation will interfere with a protein's function or activity in a way that has negative consequences.

The problem is that our genome is constantly bombarded by potentially damaging stimuli in our environment. We sometimes think of this as a modern phenomenon, especially when we consider radiation from disasters such as those at the Chernobyl or Fukushima nuclear plants. But in reality this has been an issue throughout human existence. From ultraviolet radiation in sunlight to carcinogens in food, or emission of radon gas from granite rocks, we have always been assailed by potential threats to our genomic integrity. Sometimes these don't matter that much. If ultraviolet radiation causes a mutation in a skin cell, and the mutation results in the death of that cell, it's not a big deal. We have lots of skin cells; they die and are replaced all the time, and the loss of one extra is not a problem.

But if the mutation causes a cell to survive better than its neighbours, that's a step towards the development of a potential cancer, and the consequences of that can be a very big deal indeed. For example, over 75,000 new cases of melanoma are diagnosed every year in the United States, and there are nearly 10,000 deaths per year from the condition. Excessive exposure to ultraviolet radiation is a major risk factor. In evolutionary terms, mutations would be even worse if they occurred in eggs or sperm, as they may be passed on to offspring.

If we think of our genome as constantly under assault, the insulation theory of junk DNA has definite attractions. If only one in 50 or our bases is important for protein sequence because the other 49 base pairs are simply junk, then there's only a one in 50 chance that a damaging stimulus that hits a DNA molecule will actually strike an important region.
There are two obvious difficulties with the insulation theory of junk DNA. The first is that Nessa Carey believes that a lot of noncoding DNA is functional. If she's correct, that requires a great deal of insulating DNA if it's going to protect the functional parts. You can't have it both ways.

The second problem is that it doesn't pass the Onion Test. (I don't think the Onion Test is mentioned in the book but I haven't finished it yet.)

I'm sure you can come up with other objections.

Here's how I like to think of this explanation using the field of bullets analogy popularized by David Raup in his book Extinction: Bad Genes or Bad Luck.

Imagine an automatic machine gun in a pillbox firing 10 rounds a second. It swivels from left to right spraying bullets at random across a field. The enemy has only one grenade and in order to silence the machine gun, some soldier has to run across the field avoiding the bullets until he gets within throwing distance of the pillbox.

Will the soldier's chances be increased if he lines up side-by-side with 99 other soldiers (no grenades) and they all charge together? No.

What if all 100 soldiers line up in single file with the man holding the grenade at the back? That will work.

So, the only way that the insulation theory works is if the extra DNA forms a tight shield around the important functional DNA and physically protects it from cosmic rays or UV light. But this DNA is already "shielded" by a plasma membrane, a nuclear membrane, and various histones; not to mention all the other protein molecules, carbohydrates, and water molecules inside the cell. It's difficult to see what advantage DNA molecules have in direct shielding.

None of these problems are discussed in the book.


Saturday, May 16, 2015

The Courtiers start replying

With the publication of Jerry Coyne's new book, Fact vs Faith, you can expect a vigorous response from people of faith and from atheist accommodationists.

Believers will invariably respond with some version of The Courtier’s Reply so, if you don't know what that is, now is the time to read PZ Meyer's blog post from 2006. The argument will be that Jerry and his supporters (I am one) are attacking a strawman version of religion. They will claim that there is a secret, sophisticated version of religion, known only to a few experts, that will counter all of Jerry's arguments.

The fact that this "sophisticated" version of theology begins with the premise that god exists seems to escape them but it turns out that that's the whole point of their argument. They just can't seem to get their head around the real question, "Is the belief in a supernatural being compatible with science as a way of knowing?"

We don't really care if the Bible is viewed as literal truth, poetry, or metaphor. It's still a fairy tale because it describes beings that don't exist.

Friday, May 15, 2015

This is what Intelligent Design Creationist apologetics looks like

Vincent Torely writes at: Bad math: Why Larry Moran’s “I’m not a Darwinian” isn’t a valid reply to Meyer’s argument.
Now, it’s no skin off my nose if Professor Moran wants to call us creationists. Frankly, I couldn’t care less. But the Intelligent Design movement has never claimed to have scientific evidence that the history of life was “directed by gods.” What we claim is that certain highly specific, functional systems which are found in living things were designed by some intelligent agent or agents. By “intelligent,” I don’t mean “humanlike”; rather, what I mean is: capable of engaging in abstract reasoning, when selecting suitable means to achieve one’s goals. In the most clear-cut Intelligent Design cases, the agent has to engage in mathematical reasoning – whether it be about squares (in the case of the monolith on the Moon in the movie 2001, whose sides are in the ration 1:4:9) or about digital code (in the case of the DNA we find in living things), or about which complex geometrical arrangements of amino acid chains will prove to be capable of performing a biologically useful task (in the case of protein design).

When I speak of the agent’s “goals,” I don’t mean the agent’s personal motives for doing something, which we have no way of inferring from the products they design; rather, I simply mean the task that the agent was attempting to perform, or the problem that they were trying to solve. Beyond that, there is nothing more that we could possibly infer about the agent, unless we were acquainted with them or with other members of their species. For instance, we cannot infer that the designer of an artifact was a sentient being (since the ability to design doesn’t imply the ability to feel) , or a material being (whatever that vague term means), or a physical entity (since there’s no reason why a designer needs to exhibit law-governed behavior), or even a complex or composite entity. To be sure, all the agents that we are familiar with possess these characteristics, but we cannot infer them from the products designed by an agent. Finally, the fact that an agent is capable of performing a variety of functions does not necessarily imply that the agent is composed of multiple detachable parts. We simply don’t know that. In short: the scientific inferences we can make about non-human designers are extremely modest.
It's really just an amazing coincidence that all Intelligent Design Creationists believe in gods. There's not a single one who thinks that the universe was designed by a bunch of immaterial, nonsentient, mathematicians who were just fooling around after the bar closed.

Do you think anyone really believes this crap? Do they?


Thursday, May 14, 2015

Another view of junk DNA from an Intelligent Design Creationist

Here's an excerpt from the latest post about junk DNA on Uncommon Descent [Tossing Out the Junk]. The author is Eric Anderson1.
It is truly remarkable, an embarrassment to the stifling nature of evolutionary thinking, that anyone ever entertained the idea that the only DNA worth talking about was DNA that coded for proteins. Even with the proliferation of functions for non-coding DNA, we still hear regular pronouncements from the purveyors of the materialist creation myth that “yes, there may be some function for non-coding DNA, but most of it is still junk.”

The whole idea of pervasive junk in our DNA is so naive and absurd as to boggle the mind. Thankfully, the trajectory of the evidence is clearly trending toward a more rational and complete assessment of DNA. Yes, hindsight is 20/20, and soon enough every biologist worth her salt will claim that she “always knew” that most DNA had function. But let us not forget that there were a few lone voices, including prominent ID proponents, long arguing for pervasive function — in the face of ridicule and the stifling, science-limiting attitude of the Darwin establishment about their beloved icon of “junk” DNA.
We need to preserve these comments for posterity just in case our genome actually turns out to be full of junk as most knowledgeable scientists believe. At that point, probably within a few years, the world will see that an important prediction of "prominent ID proponents" was falsified.

Meanwhile, let's hope they keep digging.


1. Nobody seems to know much about him. I'm guessing that he's an engineer.

James Hutton and John Playfair and a genealogical connection

I'm reading Eternal Ephemera by Niles Eldredge and learning about the early history of evolution and geology. Eldredge describes the work of James Hutton who is known as the father of modern geology. Here's the Wikipedia description of his work ...
He originated the theory of uniformitarianism—a fundamental principle of geology—which explains the features of the Earth's crust by means of natural processes over geologic time. Hutton's work established geology as a proper science, and thus he is often referred to as the "Father of Modern Geology".[2][3]

Through observation and carefully reasoned geological arguments, Hutton came to believe that the Earth was perpetually being formed; he recognised that the history of the Earth could be determined by understanding how processes such as erosion and sedimentation work in the present day. His theories of geology and geologic time,[4] also called deep time,[5] came to be included in theories which were called plutonism and uniformitarianism.

Wednesday, May 13, 2015

The best case for Intelligent Design Creationism

Vincent Torley was reading Darwin's Doubt when he came across a passage "that struck me as the best case I’ve ever seen for Intelligent Design, in 200 words or less" [A succinct case for Intelligent Design].

This is pretty interesting since there's always been a bit of confusion over what Intelligent Design Creationism actually means. It seems to me that the movement concentrates on criticizing evolution (and materialism) and doesn't really present much of a case for believing that the history of life was directed by gods.

Here's the passage that Torley admires. See for yourself ...
"This book has presented four separate scientific critiques demonstrating the inadequacy of the neo-Darwinian mechanism, the mechanism that Dawkins assumes can produce the appearance of design without intelligent guidance. It has shown that the neo-Darwinian mechanism fails to account for the origin of genetic information because: (1) it has no means of efficiently searching combinatorial sequence space for functional genes and proteins and, consequently, (2) it requires unrealistically long waiting times to generate even a single new gene or protein. It has also shown that the mechanism cannot produce new body plans because: (3) early acting mutations, the only kind capable of generating large-scale changes, are also invariably deleterious, and (4) genetic mutations cannot, in any case, generate the epigenetic information necessary to build a body plan." (pp. 410-411)
This passage merely affirms what we all know to be true; namely that there is no case for Intelligent Design Creationism. It's just a bunch of whining about the inadequacies of the IDiot version of evolution. That version assumes that all of evolution is due to natural selection acting on random mutations and this gives rise to the appearance of design.

I don't believe in that version of evolution and I don't think that most species look as though they were designed. Does that mean that I'm an Intelligent Design Creationist? Of course not. Meyers (and Torley) have fallen for the trap of the false dichotomy.

Even if all four of Stephen Meyer's critiques were correct1, he still isn't offering an alternative explanation and he still isn't showing us evidence for an intelligent designer—or any other kind of designer.

If this is the best case for Intelligent Design Creationism then it cannot survive. But we all know that this is all a bunch of lies. The "best" case for Intelligent Design Creationism is taught in the churches, not the classrooms.


1. They aren't.

What the barmaid said

Here's the May 13, 2015 version of Jesus and Mo. The barmaid is correct. There are lots of studies showing that you can't dispel major misconceptions by simply describing the scientifically correct view. For example, if you are teaching evolution to creationists you can describe the science until you are blue in the face but it's likely to have little impact on changing their minds.

The only way to correct misconceptions is to address them directly and show why they are wrong. That means you have to teach the reasons why a 6000-year-old Earth is a misconception and explain why irreducible complexity and the Cambrian explosion do not refute evolution.



Monday, May 11, 2015

Genomics journal is about to embarrass itself with a special issue on junk DNA

The journal Genomics is a journal devoted to the study of genomes. It describes itself like this ...
Genomics is a forum for describing the development of genome-scale technologies and their application to all areas of biological investigation.

As a journal that has evolved with the field that carries its name, Genomics focuses on the development and application of cutting-edge methods, addressing fundamental questions with potential interest to a wide audience. Our aim is to publish the highest quality research and to provide authors with rapid, fair and accurate review and publication of manuscripts falling within our scope.
They claim that all submissiosn are subjected to rigorous peer review and only 25-30% of submissions are accepted for publication.

The composition of genomes is important so it's no surprise that the journal is interested in publishing articles that address the junk DNA debate. In fact, it is so interested that it is going to devote a special issue to the subject for publication in February 2016.

That's the good news. Now for the bad news ....
Special issue on the functionality of genomic DNAs

Guest Editors:

Prof. Shi Huang
State Key Laboratory of Medical Genetics
Central South University , China
huangshi@sklmg.edu.cn

Prof James Shapiro
Department of Biochemistry and Molecular Biology
University of Chicago
jsha@uchicago.edu

The field of genome evolution and population genetics has for the past half of a century assumed that genomic DNA can be divided into functional and non-functional (“junk”) regions. Experimental molecular science has found little evidence for this assumption. A majority of the noncoding parts of the human genome are transcribed, and numerous experimental researchers have now recognized an important functional role in the so called junk DNA regions, such as syn sites, lncRNA, psudogene transcripts, antisense transcripts, microRNA, and mobile elements. In fact, evidence for functional constraints on noncoding genome regions has long been recognized. New theoretical frameworks based on less arbitrary foundations have also appeared in recent years that can coherently account for the reality of far more functional DNAs, as well as all other major known facts of evolution and population genetics. Nonetheless, there still remains a large gap in opinions between bench scientists in experimental biology and those on the theory side in bioinformatics and population genetics. This special issue will aim to close that gap and provide a view of evidence from a perspective that all genome regions have (or can easily acquire) functionality.

The special issue on the functionality of genome will focus on the following tentative topics:
  1. Theoretical foundation for all genome regions to be functional. It will cover both the theory and all major features of genome evolution.
  2. Functional studies on junk DNA regions, including lncRNA sequences, viral DNAs and mobile elements
  3. Functionalities associated with genome spatial organization in the nucleus
  4. Isocores and compositional constraints on genomes
  5. Genetic basis of complex traits and diseases focusing on the collective effects of normal genetic variations
  6. Cancer genomics
  7. Roles of repetitive DNA elements in major evolutionary transitions
  8. Correlations of genome composition and organismal complexity
  9. Epigenetics
  10. Evo Devo and extended synthesis
Important dates:

First submission date: July 1, 2015
Deadline for paper submissions: October 1, 2015
Deadline for final revised version: December 1, 2015
Expected publication: February 2016
Some of you will recognize the names of the guest editors. Jim Shapiro is one of the poster boys of Intelligent Design Creationism because he attacks evolutionary theory. He's one of the founders of the "The Third Way."

You may be less familiar with Shi Huang. He is also part of the Third Way movement but we've recently learned a lot more about him because he posts comments under the name "gnomon." You can see some of his comments in this thread: Ford Doolittle talks about transposons, junk DNA, ENCODE, and how science should work. Shi Huang appears to have a great deal of difficulty expressing himself in a rational manner.

Those guest editors will publish papers that "... provide a view of evidence from a perspective that all genome regions have (or can easily acquire) functionality." In other words, skeptics need not apply.

The controversy is over the amount of junk DNA in genomes. There are two sides in this controversy. Many scientists think there is abundant and convincing evidence that most of our genome is junk. Other scientists think that most of our genome is functional. It looks like Genomics is only interested in hearing from the second group of scientists. That's why they appointed guest editors with an obvious bias. Those guest editors also happen to be skating very close to the edge of kookdom.

This is not how a credible science journal is supposed to behave.